మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\left(y^{3}+8\right)\left(y^{3}-1\right)
ఫారమ్ y^{k}+mలో ఒక ఫ్యాక్టర్‌ని కనుగొనండి, ఇందులో y^{k} అనేది మోనోమియల్‌ని అత్యధిక పవర్ y^{6}తో భాగించాలి మరియు m అనేది కాన్‌స్టంట్ ఫ్యాక్టర్ -8ని భాగించాలి. అటువంటి ఒక ఫ్యాక్టర్ y^{3}+8. దీనిని ఈ ఫ్యాక్టర్‌తో భాగించడం ద్వారా పాలీనామియల్‌ని ఫ్యాక్టర్ చేయండి.
\left(y+2\right)\left(y^{2}-2y+4\right)
y^{3}+8ని పరిగణించండి. y^{3}+2^{3}ని y^{3}+8 వలె తిరిగి వ్రాయండి. ఈ నియమాన్ని ఉపయోగించి క్యూబ్‌ల మొత్తాన్ని ఫ్యాక్టర్ చేయవచ్చు: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(y-1\right)\left(y^{2}+y+1\right)
y^{3}-1ని పరిగణించండి. y^{3}-1^{3}ని y^{3}-1 వలె తిరిగి వ్రాయండి. ఈ నియమాన్ని ఉపయోగించి క్యూబ్‌ల తేడాను ఫ్యాక్టర్ చేయవచ్చు: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(y-1\right)\left(y^{2}+y+1\right)\left(y+2\right)\left(y^{2}-2y+4\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి. కింది పాలీనామియల్‌లలో రేషనల్ రూట్‌లు లేవు కనుక అవి ఫ్యాక్టర్ కాలేదు: y^{2}+y+1,y^{2}-2y+4.