లబ్ధమూలము
\left(y-8\right)\left(y-6\right)
మూల్యాంకనం చేయండి
\left(y-8\right)\left(y-6\right)
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=-14 ab=1\times 48=48
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని y^{2}+ay+by+48 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 48ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-8 b=-6
సమ్ -14ను అందించే పెయిర్ మన పరిష్కారం.
\left(y^{2}-8y\right)+\left(-6y+48\right)
\left(y^{2}-8y\right)+\left(-6y+48\right)ని y^{2}-14y+48 వలె తిరిగి వ్రాయండి.
y\left(y-8\right)-6\left(y-8\right)
మొదటి సమూహంలో y మరియు రెండవ సమూహంలో -6 ఫ్యాక్టర్ చేయండి.
\left(y-8\right)\left(y-6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ y-8ని ఫ్యాక్టర్ అవుట్ చేయండి.
y^{2}-14y+48=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
y=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 48}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
y=\frac{-\left(-14\right)±\sqrt{196-4\times 48}}{2}
-14 వర్గము.
y=\frac{-\left(-14\right)±\sqrt{196-192}}{2}
-4 సార్లు 48ని గుణించండి.
y=\frac{-\left(-14\right)±\sqrt{4}}{2}
-192కు 196ని కూడండి.
y=\frac{-\left(-14\right)±2}{2}
4 వర్గమూలాన్ని తీసుకోండి.
y=\frac{14±2}{2}
-14 సంఖ్య యొక్క వ్యతిరేకం 14.
y=\frac{16}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి y=\frac{14±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2కు 14ని కూడండి.
y=8
2తో 16ని భాగించండి.
y=\frac{12}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి y=\frac{14±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2ని 14 నుండి వ్యవకలనం చేయండి.
y=6
2తో 12ని భాగించండి.
y^{2}-14y+48=\left(y-8\right)\left(y-6\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 8ని మరియు x_{2} కోసం 6ని ప్రతిక్షేపించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}