మూల్యాంకనం చేయండి
y^{14}
y ఆధారంగా వేరు పరచండి
14y^{13}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
y^{2}y^{8}y^{4}
ఉక్తిని సరళీకృతం చేయడం కోసం ఘాతాంకముల యొక్క నియమాలను ఉపయోగించండి.
y^{2+8+4}
ఘాతాంకముల కోసం గుణకార నియమాలను ఉపయోగించండి.
y^{10+4}
2 మరియు 8 ఘాతాంకాలను కూడండి.
y^{14}
10 మరియు 4 ఘాతాంకాలను కూడండి.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{10}y^{4})
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 2కి 8ని జోడించి 10 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{14})
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 10కి 4ని జోడించి 14 పొందండి.
14y^{14-1}
ax^{n} యొక్క డెరివేటివ్ nax^{n-1}.
14y^{13}
1ని 14 నుండి వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}