మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

xx-1=x
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది 0కి సమానంగా ఉండకూడదు. సమీకరణము యొక్క రెండు వైపులా xతో గుణించండి.
x^{2}-1=x
x^{2}ని పొందడం కోసం x మరియు xని గుణించండి.
x^{2}-1-x=0
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-x-1=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -1 మరియు c స్థానంలో -1 ప్రతిక్షేపించండి.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
-4 సార్లు -1ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
4కు 1ని కూడండి.
x=\frac{1±\sqrt{5}}{2}
-1 సంఖ్య యొక్క వ్యతిరేకం 1.
x=\frac{\sqrt{5}+1}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{1±\sqrt{5}}{2} సమీకరణాన్ని పరిష్కరించండి. \sqrt{5}కు 1ని కూడండి.
x=\frac{1-\sqrt{5}}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{1±\sqrt{5}}{2} సమీకరణాన్ని పరిష్కరించండి. \sqrt{5}ని 1 నుండి వ్యవకలనం చేయండి.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
xx-1=x
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది 0కి సమానంగా ఉండకూడదు. సమీకరణము యొక్క రెండు వైపులా xతో గుణించండి.
x^{2}-1=x
x^{2}ని పొందడం కోసం x మరియు xని గుణించండి.
x^{2}-1-x=0
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-x=1
రెండు వైపులా 1ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము -1ని 2తో భాగించి -\frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{1}{2}ని వర్గము చేయండి.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
\frac{1}{4}కు 1ని కూడండి.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
కారకం x^{2}-x+\frac{1}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
సరళీకృతం చేయండి.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{1}{2}ని కూడండి.