మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-8 ab=1\times 15=15
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx+15 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-15 -3,-5
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 15ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-15=-16 -3-5=-8
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-5 b=-3
సమ్ -8ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-5x\right)+\left(-3x+15\right)
\left(x^{2}-5x\right)+\left(-3x+15\right)ని x^{2}-8x+15 వలె తిరిగి వ్రాయండి.
x\left(x-5\right)-3\left(x-5\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -3 ఫ్యాక్టర్ చేయండి.
\left(x-5\right)\left(x-3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-5ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}-8x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
-8 వర్గము.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 సార్లు 15ని గుణించండి.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
-60కు 64ని కూడండి.
x=\frac{-\left(-8\right)±2}{2}
4 వర్గమూలాన్ని తీసుకోండి.
x=\frac{8±2}{2}
-8 సంఖ్య యొక్క వ్యతిరేకం 8.
x=\frac{10}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{8±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2కు 8ని కూడండి.
x=5
2తో 10ని భాగించండి.
x=\frac{6}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{8±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2ని 8 నుండి వ్యవకలనం చేయండి.
x=3
2తో 6ని భాగించండి.
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 5ని మరియు x_{2} కోసం 3ని ప్రతిక్షేపించండి.