మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-6 ab=-40
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-6x-40ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-40 2,-20 4,-10 5,-8
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -40ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-10 b=4
సమ్ -6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-10\right)\left(x+4\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=10 x=-4
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-10=0 మరియు x+4=0ని పరిష్కరించండి.
a+b=-6 ab=1\left(-40\right)=-40
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-40 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-40 2,-20 4,-10 5,-8
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -40ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-10 b=4
సమ్ -6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-10x\right)+\left(4x-40\right)
\left(x^{2}-10x\right)+\left(4x-40\right)ని x^{2}-6x-40 వలె తిరిగి వ్రాయండి.
x\left(x-10\right)+4\left(x-10\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 4 ఫ్యాక్టర్ చేయండి.
\left(x-10\right)\left(x+4\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-10ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=10 x=-4
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-10=0 మరియు x+4=0ని పరిష్కరించండి.
x^{2}-6x-40=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-40\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -6 మరియు c స్థానంలో -40 ప్రతిక్షేపించండి.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-40\right)}}{2}
-6 వర్గము.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2}
-4 సార్లు -40ని గుణించండి.
x=\frac{-\left(-6\right)±\sqrt{196}}{2}
160కు 36ని కూడండి.
x=\frac{-\left(-6\right)±14}{2}
196 వర్గమూలాన్ని తీసుకోండి.
x=\frac{6±14}{2}
-6 సంఖ్య యొక్క వ్యతిరేకం 6.
x=\frac{20}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{6±14}{2} సమీకరణాన్ని పరిష్కరించండి. 14కు 6ని కూడండి.
x=10
2తో 20ని భాగించండి.
x=-\frac{8}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{6±14}{2} సమీకరణాన్ని పరిష్కరించండి. 14ని 6 నుండి వ్యవకలనం చేయండి.
x=-4
2తో -8ని భాగించండి.
x=10 x=-4
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}-6x-40=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}-6x-40-\left(-40\right)=-\left(-40\right)
సమీకరణం యొక్క రెండు వైపులా 40ని కూడండి.
x^{2}-6x=-\left(-40\right)
-40ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}-6x=40
-40ని 0 నుండి వ్యవకలనం చేయండి.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
x రాశి యొక్క గుణకము -6ని 2తో భాగించి -3ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -3 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-6x+9=40+9
-3 వర్గము.
x^{2}-6x+9=49
9కు 40ని కూడండి.
\left(x-3\right)^{2}=49
కారకం x^{2}-6x+9. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-3=7 x-3=-7
సరళీకృతం చేయండి.
x=10 x=-4
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.