మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}-2x-x=-2
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-3x=-2
-3xని పొందడం కోసం -2x మరియు -xని జత చేయండి.
x^{2}-3x+2=0
రెండు వైపులా 2ని జోడించండి.
a+b=-3 ab=2
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-3x+2ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=-2 b=-1
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(x-2\right)\left(x-1\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=2 x=1
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-2=0 మరియు x-1=0ని పరిష్కరించండి.
x^{2}-2x-x=-2
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-3x=-2
-3xని పొందడం కోసం -2x మరియు -xని జత చేయండి.
x^{2}-3x+2=0
రెండు వైపులా 2ని జోడించండి.
a+b=-3 ab=1\times 2=2
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+2 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=-2 b=-1
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(x^{2}-2x\right)+\left(-x+2\right)
\left(x^{2}-2x\right)+\left(-x+2\right)ని x^{2}-3x+2 వలె తిరిగి వ్రాయండి.
x\left(x-2\right)-\left(x-2\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(x-2\right)\left(x-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-2ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=2 x=1
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-2=0 మరియు x-1=0ని పరిష్కరించండి.
x^{2}-2x-x=-2
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-3x=-2
-3xని పొందడం కోసం -2x మరియు -xని జత చేయండి.
x^{2}-3x+2=0
రెండు వైపులా 2ని జోడించండి.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -3 మరియు c స్థానంలో 2 ప్రతిక్షేపించండి.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
-3 వర్గము.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-3\right)±\sqrt{1}}{2}
-8కు 9ని కూడండి.
x=\frac{-\left(-3\right)±1}{2}
1 వర్గమూలాన్ని తీసుకోండి.
x=\frac{3±1}{2}
-3 సంఖ్య యొక్క వ్యతిరేకం 3.
x=\frac{4}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{3±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1కు 3ని కూడండి.
x=2
2తో 4ని భాగించండి.
x=\frac{2}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{3±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1ని 3 నుండి వ్యవకలనం చేయండి.
x=1
2తో 2ని భాగించండి.
x=2 x=1
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}-2x-x=-2
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
x^{2}-3x=-2
-3xని పొందడం కోసం -2x మరియు -xని జత చేయండి.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
x రాశి యొక్క గుణకము -3ని 2తో భాగించి -\frac{3}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{3}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{3}{2}ని వర్గము చేయండి.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
\frac{9}{4}కు -2ని కూడండి.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
కారకం x^{2}-3x+\frac{9}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
సరళీకృతం చేయండి.
x=2 x=1
సమీకరణం యొక్క రెండు వైపులా \frac{3}{2}ని కూడండి.