మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=1 ab=-56
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+x-56ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,56 -2,28 -4,14 -7,8
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -56ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-7 b=8
సమ్ 1ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-7\right)\left(x+8\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=7 x=-8
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-7=0 మరియు x+8=0ని పరిష్కరించండి.
a+b=1 ab=1\left(-56\right)=-56
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-56 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,56 -2,28 -4,14 -7,8
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -56ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-7 b=8
సమ్ 1ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-7x\right)+\left(8x-56\right)
\left(x^{2}-7x\right)+\left(8x-56\right)ని x^{2}+x-56 వలె తిరిగి వ్రాయండి.
x\left(x-7\right)+8\left(x-7\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 8 ఫ్యాక్టర్ చేయండి.
\left(x-7\right)\left(x+8\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-7ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=7 x=-8
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-7=0 మరియు x+8=0ని పరిష్కరించండి.
x^{2}+x-56=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-1±\sqrt{1^{2}-4\left(-56\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 1 మరియు c స్థానంలో -56 ప్రతిక్షేపించండి.
x=\frac{-1±\sqrt{1-4\left(-56\right)}}{2}
1 వర్గము.
x=\frac{-1±\sqrt{1+224}}{2}
-4 సార్లు -56ని గుణించండి.
x=\frac{-1±\sqrt{225}}{2}
224కు 1ని కూడండి.
x=\frac{-1±15}{2}
225 వర్గమూలాన్ని తీసుకోండి.
x=\frac{14}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-1±15}{2} సమీకరణాన్ని పరిష్కరించండి. 15కు -1ని కూడండి.
x=7
2తో 14ని భాగించండి.
x=-\frac{16}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-1±15}{2} సమీకరణాన్ని పరిష్కరించండి. 15ని -1 నుండి వ్యవకలనం చేయండి.
x=-8
2తో -16ని భాగించండి.
x=7 x=-8
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+x-56=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+x-56-\left(-56\right)=-\left(-56\right)
సమీకరణం యొక్క రెండు వైపులా 56ని కూడండి.
x^{2}+x=-\left(-56\right)
-56ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+x=56
-56ని 0 నుండి వ్యవకలనం చేయండి.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=56+\left(\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము 1ని 2తో భాగించి \frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+x+\frac{1}{4}=56+\frac{1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{1}{2}ని వర్గము చేయండి.
x^{2}+x+\frac{1}{4}=\frac{225}{4}
\frac{1}{4}కు 56ని కూడండి.
\left(x+\frac{1}{2}\right)^{2}=\frac{225}{4}
x^{2}+x+\frac{1}{4} లబ్ధమూలము. సాధారణంగా, x^{2}+bx+c ఒక సంపూర్ణచతురస్రము అయితే, ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2} రూపంలో లబ్ధమూలములను కనుగొనవచ్చు.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{1}{2}=\frac{15}{2} x+\frac{1}{2}=-\frac{15}{2}
సరళీకృతం చేయండి.
x=7 x=-8
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{2}ని వ్యవకలనం చేయండి.