మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=3 ab=1\left(-18\right)=-18
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-18 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,18 -2,9 -3,6
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -18ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+18=17 -2+9=7 -3+6=3
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=6
సమ్ 3ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(6x-18\right)
\left(x^{2}-3x\right)+\left(6x-18\right)ని x^{2}+3x-18 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)+6\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}+3x-18=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
3 వర్గము.
x=\frac{-3±\sqrt{9+72}}{2}
-4 సార్లు -18ని గుణించండి.
x=\frac{-3±\sqrt{81}}{2}
72కు 9ని కూడండి.
x=\frac{-3±9}{2}
81 వర్గమూలాన్ని తీసుకోండి.
x=\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-3±9}{2} సమీకరణాన్ని పరిష్కరించండి. 9కు -3ని కూడండి.
x=3
2తో 6ని భాగించండి.
x=-\frac{12}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-3±9}{2} సమీకరణాన్ని పరిష్కరించండి. 9ని -3 నుండి వ్యవకలనం చేయండి.
x=-6
2తో -12ని భాగించండి.
x^{2}+3x-18=\left(x-3\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 3ని మరియు x_{2} కోసం -6ని ప్రతిక్షేపించండి.
x^{2}+3x-18=\left(x-3\right)\left(x+6\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.