xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
x=\frac{-3+\sqrt{31}i}{2}\approx -1.5+2.783882181i
x=\frac{-\sqrt{31}i-3}{2}\approx -1.5-2.783882181i
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x^{2}+3x=-10
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x^{2}+3x-\left(-10\right)=-10-\left(-10\right)
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
x^{2}+3x-\left(-10\right)=0
-10ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+3x+10=0
-10ని 0 నుండి వ్యవకలనం చేయండి.
x=\frac{-3±\sqrt{3^{2}-4\times 10}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 3 మరియు c స్థానంలో 10 ప్రతిక్షేపించండి.
x=\frac{-3±\sqrt{9-4\times 10}}{2}
3 వర్గము.
x=\frac{-3±\sqrt{9-40}}{2}
-4 సార్లు 10ని గుణించండి.
x=\frac{-3±\sqrt{-31}}{2}
-40కు 9ని కూడండి.
x=\frac{-3±\sqrt{31}i}{2}
-31 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-3+\sqrt{31}i}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-3±\sqrt{31}i}{2} సమీకరణాన్ని పరిష్కరించండి. i\sqrt{31}కు -3ని కూడండి.
x=\frac{-\sqrt{31}i-3}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-3±\sqrt{31}i}{2} సమీకరణాన్ని పరిష్కరించండి. i\sqrt{31}ని -3 నుండి వ్యవకలనం చేయండి.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+3x=-10
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-10+\left(\frac{3}{2}\right)^{2}
x రాశి యొక్క గుణకము 3ని 2తో భాగించి \frac{3}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{3}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+3x+\frac{9}{4}=-10+\frac{9}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{3}{2}ని వర్గము చేయండి.
x^{2}+3x+\frac{9}{4}=-\frac{31}{4}
\frac{9}{4}కు -10ని కూడండి.
\left(x+\frac{3}{2}\right)^{2}=-\frac{31}{4}
కారకం x^{2}+3x+\frac{9}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{3}{2}=\frac{\sqrt{31}i}{2} x+\frac{3}{2}=-\frac{\sqrt{31}i}{2}
సరళీకృతం చేయండి.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}