మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=2 ab=-15
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+2x-15ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,15 -3,5
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -15ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+15=14 -3+5=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=5
సమ్ 2ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-3\right)\left(x+5\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=3 x=-5
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x+5=0ని పరిష్కరించండి.
a+b=2 ab=1\left(-15\right)=-15
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-15 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,15 -3,5
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -15ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+15=14 -3+5=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=5
సమ్ 2ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(5x-15\right)
\left(x^{2}-3x\right)+\left(5x-15\right)ని x^{2}+2x-15 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)+5\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 5 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x+5\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=3 x=-5
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x+5=0ని పరిష్కరించండి.
x^{2}+2x-15=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 2 మరియు c స్థానంలో -15 ప్రతిక్షేపించండి.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
2 వర్గము.
x=\frac{-2±\sqrt{4+60}}{2}
-4 సార్లు -15ని గుణించండి.
x=\frac{-2±\sqrt{64}}{2}
60కు 4ని కూడండి.
x=\frac{-2±8}{2}
64 వర్గమూలాన్ని తీసుకోండి.
x=\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-2±8}{2} సమీకరణాన్ని పరిష్కరించండి. 8కు -2ని కూడండి.
x=3
2తో 6ని భాగించండి.
x=-\frac{10}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-2±8}{2} సమీకరణాన్ని పరిష్కరించండి. 8ని -2 నుండి వ్యవకలనం చేయండి.
x=-5
2తో -10ని భాగించండి.
x=3 x=-5
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+2x-15=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
సమీకరణం యొక్క రెండు వైపులా 15ని కూడండి.
x^{2}+2x=-\left(-15\right)
-15ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+2x=15
-15ని 0 నుండి వ్యవకలనం చేయండి.
x^{2}+2x+1^{2}=15+1^{2}
x రాశి యొక్క గుణకము 2ని 2తో భాగించి 1ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి 1 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+2x+1=15+1
1 వర్గము.
x^{2}+2x+1=16
1కు 15ని కూడండి.
\left(x+1\right)^{2}=16
కారకం x^{2}+2x+1. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+1=4 x+1=-4
సరళీకృతం చేయండి.
x=3 x=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.