మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=17 ab=1\left(-60\right)=-60
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-60 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -60ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=20
సమ్ 17ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(20x-60\right)
\left(x^{2}-3x\right)+\left(20x-60\right)ని x^{2}+17x-60 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)+20\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 20 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x+20\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}+17x-60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-17±\sqrt{17^{2}-4\left(-60\right)}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-17±\sqrt{289-4\left(-60\right)}}{2}
17 వర్గము.
x=\frac{-17±\sqrt{289+240}}{2}
-4 సార్లు -60ని గుణించండి.
x=\frac{-17±\sqrt{529}}{2}
240కు 289ని కూడండి.
x=\frac{-17±23}{2}
529 వర్గమూలాన్ని తీసుకోండి.
x=\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-17±23}{2} సమీకరణాన్ని పరిష్కరించండి. 23కు -17ని కూడండి.
x=3
2తో 6ని భాగించండి.
x=-\frac{40}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-17±23}{2} సమీకరణాన్ని పరిష్కరించండి. 23ని -17 నుండి వ్యవకలనం చేయండి.
x=-20
2తో -40ని భాగించండి.
x^{2}+17x-60=\left(x-3\right)\left(x-\left(-20\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 3ని మరియు x_{2} కోసం -20ని ప్రతిక్షేపించండి.
x^{2}+17x-60=\left(x-3\right)\left(x+20\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.