లబ్ధమూలము
\left(x+1\right)\left(x+12\right)
మూల్యాంకనం చేయండి
\left(x+1\right)\left(x+12\right)
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=13 ab=1\times 12=12
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx+12 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,12 2,6 3,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1+12=13 2+6=8 3+4=7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=1 b=12
సమ్ 13ను అందించే పెయిర్ మన పరిష్కారం.
\left(x^{2}+x\right)+\left(12x+12\right)
\left(x^{2}+x\right)+\left(12x+12\right)ని x^{2}+13x+12 వలె తిరిగి వ్రాయండి.
x\left(x+1\right)+12\left(x+1\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 12 ఫ్యాక్టర్ చేయండి.
\left(x+1\right)\left(x+12\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}+13x+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-13±\sqrt{13^{2}-4\times 12}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-13±\sqrt{169-4\times 12}}{2}
13 వర్గము.
x=\frac{-13±\sqrt{169-48}}{2}
-4 సార్లు 12ని గుణించండి.
x=\frac{-13±\sqrt{121}}{2}
-48కు 169ని కూడండి.
x=\frac{-13±11}{2}
121 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{2}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-13±11}{2} సమీకరణాన్ని పరిష్కరించండి. 11కు -13ని కూడండి.
x=-1
2తో -2ని భాగించండి.
x=-\frac{24}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-13±11}{2} సమీకరణాన్ని పరిష్కరించండి. 11ని -13 నుండి వ్యవకలనం చేయండి.
x=-12
2తో -24ని భాగించండి.
x^{2}+13x+12=\left(x-\left(-1\right)\right)\left(x-\left(-12\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -1ని మరియు x_{2} కోసం -12ని ప్రతిక్షేపించండి.
x^{2}+13x+12=\left(x+1\right)\left(x+12\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}