మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}+11x+24=0
రెండు వైపులా 24ని జోడించండి.
a+b=11 ab=24
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+11x+24ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,24 2,12 3,8 4,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 24ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+24=25 2+12=14 3+8=11 4+6=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=3 b=8
సమ్ 11ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x+3\right)\left(x+8\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=-3 x=-8
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+3=0 మరియు x+8=0ని పరిష్కరించండి.
x^{2}+11x+24=0
రెండు వైపులా 24ని జోడించండి.
a+b=11 ab=1\times 24=24
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+24 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,24 2,12 3,8 4,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 24ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+24=25 2+12=14 3+8=11 4+6=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=3 b=8
సమ్ 11ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}+3x\right)+\left(8x+24\right)
\left(x^{2}+3x\right)+\left(8x+24\right)ని x^{2}+11x+24 వలె తిరిగి వ్రాయండి.
x\left(x+3\right)+8\left(x+3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 8 ఫ్యాక్టర్ చేయండి.
\left(x+3\right)\left(x+8\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=-3 x=-8
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+3=0 మరియు x+8=0ని పరిష్కరించండి.
x^{2}+11x=-24
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x^{2}+11x-\left(-24\right)=-24-\left(-24\right)
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
x^{2}+11x-\left(-24\right)=0
-24ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+11x+24=0
-24ని 0 నుండి వ్యవకలనం చేయండి.
x=\frac{-11±\sqrt{11^{2}-4\times 24}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 11 మరియు c స్థానంలో 24 ప్రతిక్షేపించండి.
x=\frac{-11±\sqrt{121-4\times 24}}{2}
11 వర్గము.
x=\frac{-11±\sqrt{121-96}}{2}
-4 సార్లు 24ని గుణించండి.
x=\frac{-11±\sqrt{25}}{2}
-96కు 121ని కూడండి.
x=\frac{-11±5}{2}
25 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-11±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5కు -11ని కూడండి.
x=-3
2తో -6ని భాగించండి.
x=-\frac{16}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-11±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5ని -11 నుండి వ్యవకలనం చేయండి.
x=-8
2తో -16ని భాగించండి.
x=-3 x=-8
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+11x=-24
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-24+\left(\frac{11}{2}\right)^{2}
x రాశి యొక్క గుణకము 11ని 2తో భాగించి \frac{11}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{11}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+11x+\frac{121}{4}=-24+\frac{121}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{11}{2}ని వర్గము చేయండి.
x^{2}+11x+\frac{121}{4}=\frac{25}{4}
\frac{121}{4}కు -24ని కూడండి.
\left(x+\frac{11}{2}\right)^{2}=\frac{25}{4}
కారకం x^{2}+11x+\frac{121}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{11}{2}=\frac{5}{2} x+\frac{11}{2}=-\frac{5}{2}
సరళీకృతం చేయండి.
x=-3 x=-8
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{11}{2}ని వ్యవకలనం చేయండి.