మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=10 ab=25
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+10x+25ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,25 5,5
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 25ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+25=26 5+5=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=5 b=5
సమ్ 10ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x+5\right)\left(x+5\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
\left(x+5\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=-5
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+5=0ని పరిష్కరించండి.
a+b=10 ab=1\times 25=25
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+25 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,25 5,5
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 25ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+25=26 5+5=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=5 b=5
సమ్ 10ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}+5x\right)+\left(5x+25\right)
\left(x^{2}+5x\right)+\left(5x+25\right)ని x^{2}+10x+25 వలె తిరిగి వ్రాయండి.
x\left(x+5\right)+5\left(x+5\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 5 ఫ్యాక్టర్ చేయండి.
\left(x+5\right)\left(x+5\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+5ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x+5\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=-5
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+5=0ని పరిష్కరించండి.
x^{2}+10x+25=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 10 మరియు c స్థానంలో 25 ప్రతిక్షేపించండి.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
10 వర్గము.
x=\frac{-10±\sqrt{100-100}}{2}
-4 సార్లు 25ని గుణించండి.
x=\frac{-10±\sqrt{0}}{2}
-100కు 100ని కూడండి.
x=-\frac{10}{2}
0 వర్గమూలాన్ని తీసుకోండి.
x=-5
2తో -10ని భాగించండి.
\left(x+5\right)^{2}=0
x^{2}+10x+25 లబ్ధమూలము. సాధారణంగా, x^{2}+bx+c ఒక సంపూర్ణచతురస్రము అయితే, ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2} రూపంలో లబ్ధమూలములను కనుగొనవచ్చు.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+5=0 x+5=0
సరళీకృతం చేయండి.
x=-5 x=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 5ని వ్యవకలనం చేయండి.
x=-5
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.