xని పరిష్కరించండి
x=-\frac{3\left(2m-5\right)}{3-m}
m\neq 3
mని పరిష్కరించండి
m=-\frac{3\left(5-x\right)}{x-6}
x\neq 6
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
m\left(x-6\right)=x-3+\left(x-6\right)\times 2
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది 6కి సమానంగా ఉండకూడదు. సమీకరణము యొక్క రెండు వైపులా x-6తో గుణించండి.
mx-6m=x-3+\left(x-6\right)\times 2
x-6తో mని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
mx-6m=x-3+2x-12
2తో x-6ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
mx-6m=3x-3-12
3xని పొందడం కోసం x మరియు 2xని జత చేయండి.
mx-6m=3x-15
-15ని పొందడం కోసం 12ని -3 నుండి వ్యవకలనం చేయండి.
mx-6m-3x=-15
రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
mx-3x=-15+6m
రెండు వైపులా 6mని జోడించండి.
\left(m-3\right)x=-15+6m
x ఉన్న అన్ని విలువలను జత చేయండి.
\left(m-3\right)x=6m-15
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{\left(m-3\right)x}{m-3}=\frac{6m-15}{m-3}
రెండు వైపులా m-3తో భాగించండి.
x=\frac{6m-15}{m-3}
m-3తో భాగించడం ద్వారా m-3 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x=\frac{3\left(2m-5\right)}{m-3}
m-3తో 6m-15ని భాగించండి.
x=\frac{3\left(2m-5\right)}{m-3}\text{, }x\neq 6
వేరియబుల్ x అన్నది 6కి సమానంగా ఉండకూడదు.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}