మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=16 ab=1\times 64=64
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని f^{2}+af+bf+64 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,64 2,32 4,16 8,8
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 64ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+64=65 2+32=34 4+16=20 8+8=16
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=8 b=8
సమ్ 16ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(f^{2}+8f\right)+\left(8f+64\right)
\left(f^{2}+8f\right)+\left(8f+64\right)ని f^{2}+16f+64 వలె తిరిగి వ్రాయండి.
f\left(f+8\right)+8\left(f+8\right)
మొదటి సమూహంలో f మరియు రెండవ సమూహంలో 8 ఫ్యాక్టర్ చేయండి.
\left(f+8\right)\left(f+8\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ f+8ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(f+8\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
factor(f^{2}+16f+64)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
\sqrt{64}=8
చివరి విలువ యొక్క వర్గమూలమును కనుగొనండి, 64.
\left(f+8\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
f^{2}+16f+64=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
f=\frac{-16±\sqrt{16^{2}-4\times 64}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
f=\frac{-16±\sqrt{256-4\times 64}}{2}
16 వర్గము.
f=\frac{-16±\sqrt{256-256}}{2}
-4 సార్లు 64ని గుణించండి.
f=\frac{-16±\sqrt{0}}{2}
-256కు 256ని కూడండి.
f=\frac{-16±0}{2}
0 వర్గమూలాన్ని తీసుకోండి.
f^{2}+16f+64=\left(f-\left(-8\right)\right)\left(f-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -8ని మరియు x_{2} కోసం -8ని ప్రతిక్షేపించండి.
f^{2}+16f+64=\left(f+8\right)\left(f+8\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.