మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

p+q=-10 pq=1\times 25=25
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని a^{2}+pa+qa+25 లాగా తిరిగి వ్రాయాలి. p, qను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-25 -5,-5
pq పాజిటివ్ కనుక, p మరియు q ఒకే గుర్తును కలిగి ఉంటాయి. p+q నెగిటివ్ కనుక, p మరియు q రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 25ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-25=-26 -5-5=-10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
p=-5 q=-5
సమ్ -10ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(a^{2}-5a\right)+\left(-5a+25\right)
\left(a^{2}-5a\right)+\left(-5a+25\right)ని a^{2}-10a+25 వలె తిరిగి వ్రాయండి.
a\left(a-5\right)-5\left(a-5\right)
మొదటి సమూహంలో a మరియు రెండవ సమూహంలో -5 ఫ్యాక్టర్ చేయండి.
\left(a-5\right)\left(a-5\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ a-5ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(a-5\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
factor(a^{2}-10a+25)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
\sqrt{25}=5
చివరి విలువ యొక్క వర్గమూలమును కనుగొనండి, 25.
\left(a-5\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
a^{2}-10a+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
-10 వర్గము.
a=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
-4 సార్లు 25ని గుణించండి.
a=\frac{-\left(-10\right)±\sqrt{0}}{2}
-100కు 100ని కూడండి.
a=\frac{-\left(-10\right)±0}{2}
0 వర్గమూలాన్ని తీసుకోండి.
a=\frac{10±0}{2}
-10 సంఖ్య యొక్క వ్యతిరేకం 10.
a^{2}-10a+25=\left(a-5\right)\left(a-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 5ని మరియు x_{2} కోసం 5ని ప్రతిక్షేపించండి.