లబ్ధమూలము
\left(a-2\right)\left(a+4\right)
మూల్యాంకనం చేయండి
\left(a-2\right)\left(a+4\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
p+q=2 pq=1\left(-8\right)=-8
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని a^{2}+pa+qa-8 లాగా తిరిగి వ్రాయాలి. p, qను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,8 -2,4
pq నెగిటివ్ కనుక, p మరియు q వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. p+q పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -8ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1+8=7 -2+4=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
p=-2 q=4
సమ్ 2ను అందించే పెయిర్ మన పరిష్కారం.
\left(a^{2}-2a\right)+\left(4a-8\right)
\left(a^{2}-2a\right)+\left(4a-8\right)ని a^{2}+2a-8 వలె తిరిగి వ్రాయండి.
a\left(a-2\right)+4\left(a-2\right)
మొదటి సమూహంలో a మరియు రెండవ సమూహంలో 4 ఫ్యాక్టర్ చేయండి.
\left(a-2\right)\left(a+4\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ a-2ని ఫ్యాక్టర్ అవుట్ చేయండి.
a^{2}+2a-8=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
a=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
a=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
2 వర్గము.
a=\frac{-2±\sqrt{4+32}}{2}
-4 సార్లు -8ని గుణించండి.
a=\frac{-2±\sqrt{36}}{2}
32కు 4ని కూడండి.
a=\frac{-2±6}{2}
36 వర్గమూలాన్ని తీసుకోండి.
a=\frac{4}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి a=\frac{-2±6}{2} సమీకరణాన్ని పరిష్కరించండి. 6కు -2ని కూడండి.
a=2
2తో 4ని భాగించండి.
a=-\frac{8}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి a=\frac{-2±6}{2} సమీకరణాన్ని పరిష్కరించండి. 6ని -2 నుండి వ్యవకలనం చేయండి.
a=-4
2తో -8ని భాగించండి.
a^{2}+2a-8=\left(a-2\right)\left(a-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 2ని మరియు x_{2} కోసం -4ని ప్రతిక్షేపించండి.
a^{2}+2a-8=\left(a-2\right)\left(a+4\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}