లబ్ధమూలము
x\left(16x+9\right)
మూల్యాంకనం చేయండి
x\left(16x+9\right)
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x\left(9+16x\right)
x యొక్క లబ్ధమూలమును కనుగొనండి.
16x^{2}+9x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-9±\sqrt{9^{2}}}{2\times 16}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-9±9}{2\times 16}
9^{2} వర్గమూలాన్ని తీసుకోండి.
x=\frac{-9±9}{32}
2 సార్లు 16ని గుణించండి.
x=\frac{0}{32}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-9±9}{32} సమీకరణాన్ని పరిష్కరించండి. 9కు -9ని కూడండి.
x=0
32తో 0ని భాగించండి.
x=-\frac{18}{32}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-9±9}{32} సమీకరణాన్ని పరిష్కరించండి. 9ని -9 నుండి వ్యవకలనం చేయండి.
x=-\frac{9}{16}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-18}{32} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
16x^{2}+9x=16x\left(x-\left(-\frac{9}{16}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 0ని మరియు x_{2} కోసం -\frac{9}{16}ని ప్రతిక్షేపించండి.
16x^{2}+9x=16x\left(x+\frac{9}{16}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
16x^{2}+9x=16x\times \frac{16x+9}{16}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{9}{16}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
16x^{2}+9x=x\left(16x+9\right)
16 మరియు 16లో అతిపెద్ద ఉమ్మడి కారకము 16ను తీసివేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}