లబ్ధమూలము
2\left(x-7\right)^{2}
మూల్యాంకనం చేయండి
2\left(x-7\right)^{2}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2\left(49-14x+x^{2}\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
\left(x-7\right)^{2}
49-14x+x^{2}ని పరిగణించండి. పర్ఫెక్ట్ స్క్వేర్ ఫార్ములా a^{2}-2ab+b^{2}=\left(a-b\right)^{2}ను ఉపయోగించండి, ఇందులో a=x, b=7.
2\left(x-7\right)^{2}
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
factor(2x^{2}-28x+98)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
gcf(2,-28,98)=2
గుణకముల యొక్క అతిపెద్ద ఉమ్మడి లబ్ధిమూలమును కనుగొనండి.
2\left(x^{2}-14x+49\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
\sqrt{49}=7
చివరి విలువ యొక్క వర్గమూలమును కనుగొనండి, 49.
2\left(x-7\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
2x^{2}-28x+98=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 98}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 98}}{2\times 2}
-28 వర్గము.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 98}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-28\right)±\sqrt{784-784}}{2\times 2}
-8 సార్లు 98ని గుణించండి.
x=\frac{-\left(-28\right)±\sqrt{0}}{2\times 2}
-784కు 784ని కూడండి.
x=\frac{-\left(-28\right)±0}{2\times 2}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{28±0}{2\times 2}
-28 సంఖ్య యొక్క వ్యతిరేకం 28.
x=\frac{28±0}{4}
2 సార్లు 2ని గుణించండి.
2x^{2}-28x+98=2\left(x-7\right)\left(x-7\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 7ని మరియు x_{2} కోసం 7ని ప్రతిక్షేపించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}