లబ్ధమూలము
-\left(h-9\right)\left(h+9\right)\left(h^{2}-9h+81\right)\left(h^{2}+9h+81\right)
మూల్యాంకనం చేయండి
\left(81-h^{2}\right)\left(\left(h^{2}+81\right)^{2}-81h^{2}\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\left(729-h^{3}\right)\left(729+h^{3}\right)
729^{2}-\left(h^{3}\right)^{2}ని 531441-h^{6} వలె తిరిగి వ్రాయండి. ఈ నియమాన్ని ఉపయోగించి వర్గాల తేడాలో కారణాంకాలుగా వ్రాయవచ్చు: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-h^{3}+729\right)\left(h^{3}+729\right)
విలువలను క్రమాన్ని మార్చండి.
\left(h-9\right)\left(-h^{2}-9h-81\right)
-h^{3}+729ని పరిగణించండి. పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ 729ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ -1ని భాగిస్తుంది. అటువంటి ఒక రూట్ 9. h-9తో దీనిని భాగించడం ద్వారా పాలీనామియల్ని ఫ్యాక్టర్ చేయండి.
\left(h+9\right)\left(h^{2}-9h+81\right)
h^{3}+729ని పరిగణించండి. h^{3}+9^{3}ని h^{3}+729 వలె తిరిగి వ్రాయండి. ఈ నియమాన్ని ఉపయోగించి క్యూబ్ల మొత్తాన్ని ఫ్యాక్టర్ చేయవచ్చు: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(-h^{2}-9h-81\right)\left(h-9\right)\left(h+9\right)\left(h^{2}-9h+81\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి. కింది పాలీనామియల్లలో రేషనల్ రూట్లు లేవు కనుక అవి ఫ్యాక్టర్ కాలేదు: -h^{2}-9h-81,h^{2}-9h+81.
531441-h^{6}
6 యొక్క ఘాతంలో 9 ఉంచి గణించి, 531441ని పొందండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}