మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

7x-15y-2=0,x+2y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
7x-15y-2=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
7x-15y=2
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
7x=15y+2
సమీకరణం యొక్క రెండు వైపులా 15yని కూడండి.
x=\frac{1}{7}\left(15y+2\right)
రెండు వైపులా 7తో భాగించండి.
x=\frac{15}{7}y+\frac{2}{7}
\frac{1}{7} సార్లు 15y+2ని గుణించండి.
\frac{15}{7}y+\frac{2}{7}+2y=3
మరొక సమీకరణములో xను \frac{15y+2}{7} స్థానంలో ప్రతిక్షేపించండి, x+2y=3.
\frac{29}{7}y+\frac{2}{7}=3
2yకు \frac{15y}{7}ని కూడండి.
\frac{29}{7}y=\frac{19}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{7}ని వ్యవకలనం చేయండి.
y=\frac{19}{29}
సమీకరణము యొక్క రెండు వైపులా \frac{29}{7}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{15}{7}\times \frac{19}{29}+\frac{2}{7}
x=\frac{15}{7}y+\frac{2}{7}లో yను \frac{19}{29} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{285}{203}+\frac{2}{7}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{15}{7} సార్లు \frac{19}{29}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{49}{29}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{285}{203}కు \frac{2}{7}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{49}{29},y=\frac{19}{29}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
7x-15y-2=0,x+2y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
\left(\begin{matrix}7&-15\\1&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-\left(-15\right)}&-\frac{-15}{7\times 2-\left(-15\right)}\\-\frac{1}{7\times 2-\left(-15\right)}&\frac{7}{7\times 2-\left(-15\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}&\frac{15}{29}\\-\frac{1}{29}&\frac{7}{29}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}\times 2+\frac{15}{29}\times 3\\-\frac{1}{29}\times 2+\frac{7}{29}\times 3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{29}\\\frac{19}{29}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{49}{29},y=\frac{19}{29}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
7x-15y-2=0,x+2y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7x-15y-2=0,7x+7\times 2y=7\times 3
7x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 7తో గుణించండి.
7x-15y-2=0,7x+14y=21
సరళీకృతం చేయండి.
7x-7x-15y-14y-2=-21
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 7x+14y=21ని 7x-15y-2=0 నుండి వ్యవకలనం చేయండి.
-15y-14y-2=-21
-7xకు 7xని కూడండి. 7x మరియు -7x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-29y-2=-21
-14yకు -15yని కూడండి.
-29y=-19
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
y=\frac{19}{29}
రెండు వైపులా -29తో భాగించండి.
x+2\times \frac{19}{29}=3
x+2y=3లో yను \frac{19}{29} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+\frac{38}{29}=3
2 సార్లు \frac{19}{29}ని గుణించండి.
x=\frac{49}{29}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{38}{29}ని వ్యవకలనం చేయండి.
x=\frac{49}{29},y=\frac{19}{29}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.