మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x-1-9x^{2}=0
రెండు భాగాల నుండి 9x^{2}ని వ్యవకలనం చేయండి.
-9x^{2}+6x-1=0
దీనిని ప్రామాణిక రూపంలో పెట్టడం కోసం పాలినామియల్‌ను సరి చేయండి. పదాలను అత్యధిక పవర్ నుండి అతి తక్కువ పవర్ క్రమంలో క్రమీకరించండి.
a+b=6 ab=-9\left(-1\right)=9
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును -9x^{2}+ax+bx-1 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,9 3,3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 9ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+9=10 3+3=6
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=3 b=3
సమ్ 6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(-9x^{2}+3x\right)+\left(3x-1\right)
\left(-9x^{2}+3x\right)+\left(3x-1\right)ని -9x^{2}+6x-1 వలె తిరిగి వ్రాయండి.
-3x\left(3x-1\right)+3x-1
-9x^{2}+3xలో -3xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(3x-1\right)\left(-3x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x-1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=\frac{1}{3} x=\frac{1}{3}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x-1=0 మరియు -3x+1=0ని పరిష్కరించండి.
6x-1-9x^{2}=0
రెండు భాగాల నుండి 9x^{2}ని వ్యవకలనం చేయండి.
-9x^{2}+6x-1=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-6±\sqrt{6^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో -9, b స్థానంలో 6 మరియు c స్థానంలో -1 ప్రతిక్షేపించండి.
x=\frac{-6±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
6 వర్గము.
x=\frac{-6±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-4 సార్లు -9ని గుణించండి.
x=\frac{-6±\sqrt{36-36}}{2\left(-9\right)}
36 సార్లు -1ని గుణించండి.
x=\frac{-6±\sqrt{0}}{2\left(-9\right)}
-36కు 36ని కూడండి.
x=-\frac{6}{2\left(-9\right)}
0 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{6}{-18}
2 సార్లు -9ని గుణించండి.
x=\frac{1}{3}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-6}{-18} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
6x-1-9x^{2}=0
రెండు భాగాల నుండి 9x^{2}ని వ్యవకలనం చేయండి.
6x-9x^{2}=1
రెండు వైపులా 1ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
-9x^{2}+6x=1
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\frac{-9x^{2}+6x}{-9}=\frac{1}{-9}
రెండు వైపులా -9తో భాగించండి.
x^{2}+\frac{6}{-9}x=\frac{1}{-9}
-9తో భాగించడం ద్వారా -9 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-\frac{2}{3}x=\frac{1}{-9}
3ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{6}{-9} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
-9తో 1ని భాగించండి.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
x రాశి యొక్క గుణకము -\frac{2}{3}ని 2తో భాగించి -\frac{1}{3}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{1}{3} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{1}{3}ని వర్గము చేయండి.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{9}కు -\frac{1}{9}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x-\frac{1}{3}\right)^{2}=0
కారకం x^{2}-\frac{2}{3}x+\frac{1}{9}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
సరళీకృతం చేయండి.
x=\frac{1}{3} x=\frac{1}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{1}{3}ని కూడండి.
x=\frac{1}{3}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.