xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
x=\frac{-9\sqrt{3}i+9}{8}\approx 1.125-1.948557159i
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
x=\frac{9+9\sqrt{3}i}{8}\approx 1.125+1.948557159i
xని పరిష్కరించండి
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ 729ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 64ని భాగిస్తుంది. మొత్తం క్యాండిడేట్లను \frac{p}{q} జాబితా చేయండి.
x=-\frac{9}{4}
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్ను కనుగొనండి. పూర్ణాంకం రూట్లు కనుగొనబడకుంటే, ఫ్రాక్షన్లను ప్రయత్నించండి.
16x^{2}-36x+81=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్కు ఒక ఫ్యాక్టర్. 64x^{3}+729ని 4\left(x+\frac{9}{4}\right)=4x+9తో భాగించి 16x^{2}-36x+81ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్ప్రెషన్ను పరిష్కరించండి.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 16 స్థానంలో a, -36 స్థానంలో b 81 స్థానంలో c ఉంచండి.
x=\frac{36±\sqrt{-3888}}{32}
లెక్కలు చేయండి.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
± ప్లస్ మరియు ± మైనస్ అయినప్పుడు సమీకరణం 16x^{2}-36x+81=0ని పరిష్కరించండి.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ 729ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 64ని భాగిస్తుంది. మొత్తం క్యాండిడేట్లను \frac{p}{q} జాబితా చేయండి.
x=-\frac{9}{4}
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్ను కనుగొనండి. పూర్ణాంకం రూట్లు కనుగొనబడకుంటే, ఫ్రాక్షన్లను ప్రయత్నించండి.
16x^{2}-36x+81=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్కు ఒక ఫ్యాక్టర్. 64x^{3}+729ని 4\left(x+\frac{9}{4}\right)=4x+9తో భాగించి 16x^{2}-36x+81ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్ప్రెషన్ను పరిష్కరించండి.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 16 స్థానంలో a, -36 స్థానంలో b 81 స్థానంలో c ఉంచండి.
x=\frac{36±\sqrt{-3888}}{32}
లెక్కలు చేయండి.
x\in \emptyset
రియల్ ఫీల్డ్లో రుణాత్మక సంఖ్య యొక్క వర్గమూలం నిర్వచించబడలేదు కనుక పరిష్కారాలు లేవు.
x=-\frac{9}{4}
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}