xని పరిష్కరించండి
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
6x^{2}-x-15=0
రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
a+b=-1 ab=6\left(-15\right)=-90
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 6x^{2}+ax+bx-15 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -90ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-10 b=9
సమ్ -1ను అందించే పెయిర్ మన పరిష్కారం.
\left(6x^{2}-10x\right)+\left(9x-15\right)
\left(6x^{2}-10x\right)+\left(9x-15\right)ని 6x^{2}-x-15 వలె తిరిగి వ్రాయండి.
2x\left(3x-5\right)+3\left(3x-5\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(3x-5\right)\left(2x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x-5ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=\frac{5}{3} x=-\frac{3}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x-5=0 మరియు 2x+3=0ని పరిష్కరించండి.
6x^{2}-x=15
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
6x^{2}-x-15=15-15
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
6x^{2}-x-15=0
15ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 6, b స్థానంలో -1 మరియు c స్థానంలో -15 ప్రతిక్షేపించండి.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-15\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 6}
-24 సార్లు -15ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\times 6}
360కు 1ని కూడండి.
x=\frac{-\left(-1\right)±19}{2\times 6}
361 వర్గమూలాన్ని తీసుకోండి.
x=\frac{1±19}{2\times 6}
-1 సంఖ్య యొక్క వ్యతిరేకం 1.
x=\frac{1±19}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{20}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{1±19}{12} సమీకరణాన్ని పరిష్కరించండి. 19కు 1ని కూడండి.
x=\frac{5}{3}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{20}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{18}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{1±19}{12} సమీకరణాన్ని పరిష్కరించండి. 19ని 1 నుండి వ్యవకలనం చేయండి.
x=-\frac{3}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-18}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=\frac{5}{3} x=-\frac{3}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
6x^{2}-x=15
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\frac{6x^{2}-x}{6}=\frac{15}{6}
రెండు వైపులా 6తో భాగించండి.
x^{2}-\frac{1}{6}x=\frac{15}{6}
6తో భాగించడం ద్వారా 6 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-\frac{1}{6}x=\frac{5}{2}
3ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{15}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{12}\right)^{2}
x రాశి యొక్క గుణకము -\frac{1}{6}ని 2తో భాగించి -\frac{1}{12}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{1}{12} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{5}{2}+\frac{1}{144}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{1}{12}ని వర్గము చేయండి.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{361}{144}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{144}కు \frac{5}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x-\frac{1}{12}\right)^{2}=\frac{361}{144}
కారకం x^{2}-\frac{1}{6}x+\frac{1}{144}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{1}{12}=\frac{19}{12} x-\frac{1}{12}=-\frac{19}{12}
సరళీకృతం చేయండి.
x=\frac{5}{3} x=-\frac{3}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{1}{12}ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}