మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6\left(x^{2}-2x-3\right)
6 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=-2 ab=1\left(-3\right)=-3
x^{2}-2x-3ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-3 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=-3 b=1
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(x^{2}-3x\right)+\left(x-3\right)
\left(x^{2}-3x\right)+\left(x-3\right)ని x^{2}-2x-3 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)+x-3
x^{2}-3xలో xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-3\right)\left(x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
6\left(x-3\right)\left(x+1\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
6x^{2}-12x-18=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\left(-18\right)}}{2\times 6}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 6\left(-18\right)}}{2\times 6}
-12 వర్గము.
x=\frac{-\left(-12\right)±\sqrt{144-24\left(-18\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\times 6}
-24 సార్లు -18ని గుణించండి.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\times 6}
432కు 144ని కూడండి.
x=\frac{-\left(-12\right)±24}{2\times 6}
576 వర్గమూలాన్ని తీసుకోండి.
x=\frac{12±24}{2\times 6}
-12 సంఖ్య యొక్క వ్యతిరేకం 12.
x=\frac{12±24}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{36}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{12±24}{12} సమీకరణాన్ని పరిష్కరించండి. 24కు 12ని కూడండి.
x=3
12తో 36ని భాగించండి.
x=-\frac{12}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{12±24}{12} సమీకరణాన్ని పరిష్కరించండి. 24ని 12 నుండి వ్యవకలనం చేయండి.
x=-1
12తో -12ని భాగించండి.
6x^{2}-12x-18=6\left(x-3\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 3ని మరియు x_{2} కోసం -1ని ప్రతిక్షేపించండి.
6x^{2}-12x-18=6\left(x-3\right)\left(x+1\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.