లబ్ధమూలము
\left(3x-4\right)\left(2x+7\right)
మూల్యాంకనం చేయండి
\left(3x-4\right)\left(2x+7\right)
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=13 ab=6\left(-28\right)=-168
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 6x^{2}+ax+bx-28 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -168ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-8 b=21
సమ్ 13ను అందించే పెయిర్ మన పరిష్కారం.
\left(6x^{2}-8x\right)+\left(21x-28\right)
\left(6x^{2}-8x\right)+\left(21x-28\right)ని 6x^{2}+13x-28 వలె తిరిగి వ్రాయండి.
2x\left(3x-4\right)+7\left(3x-4\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 7 ఫ్యాక్టర్ చేయండి.
\left(3x-4\right)\left(2x+7\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x-4ని ఫ్యాక్టర్ అవుట్ చేయండి.
6x^{2}+13x-28=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-13±\sqrt{13^{2}-4\times 6\left(-28\right)}}{2\times 6}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-13±\sqrt{169-4\times 6\left(-28\right)}}{2\times 6}
13 వర్గము.
x=\frac{-13±\sqrt{169-24\left(-28\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-13±\sqrt{169+672}}{2\times 6}
-24 సార్లు -28ని గుణించండి.
x=\frac{-13±\sqrt{841}}{2\times 6}
672కు 169ని కూడండి.
x=\frac{-13±29}{2\times 6}
841 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-13±29}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{16}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-13±29}{12} సమీకరణాన్ని పరిష్కరించండి. 29కు -13ని కూడండి.
x=\frac{4}{3}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{16}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{42}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-13±29}{12} సమీకరణాన్ని పరిష్కరించండి. 29ని -13 నుండి వ్యవకలనం చేయండి.
x=-\frac{7}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-42}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం \frac{4}{3}ని మరియు x_{2} కోసం -\frac{7}{2}ని ప్రతిక్షేపించండి.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x+\frac{7}{2}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\left(x+\frac{7}{2}\right)
ఉమ్మడి హారమును కనుగొని, లవములను వ్యవకలనం చేయడం ద్వారా \frac{4}{3}ని x నుండి వ్యవకలనం చేయండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\times \frac{2x+7}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{7}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{3\times 2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3x-4}{3} సార్లు \frac{2x+7}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{6}
3 సార్లు 2ని గుణించండి.
6x^{2}+13x-28=\left(3x-4\right)\left(2x+7\right)
6 మరియు 6లో అతిపెద్ద ఉమ్మడి కారకము 6ను తీసివేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}