మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x^{2}+12x-5x=-2
రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x^{2}+7x=-2
7xని పొందడం కోసం 12x మరియు -5xని జత చేయండి.
6x^{2}+7x+2=0
రెండు వైపులా 2ని జోడించండి.
a+b=7 ab=6\times 2=12
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 6x^{2}+ax+bx+2 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,12 2,6 3,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+12=13 2+6=8 3+4=7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=3 b=4
సమ్ 7ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(6x^{2}+3x\right)+\left(4x+2\right)
\left(6x^{2}+3x\right)+\left(4x+2\right)ని 6x^{2}+7x+2 వలె తిరిగి వ్రాయండి.
3x\left(2x+1\right)+2\left(2x+1\right)
మొదటి సమూహంలో 3x మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(2x+1\right)\left(3x+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=-\frac{1}{2} x=-\frac{2}{3}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 2x+1=0 మరియు 3x+2=0ని పరిష్కరించండి.
6x^{2}+12x-5x=-2
రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x^{2}+7x=-2
7xని పొందడం కోసం 12x మరియు -5xని జత చేయండి.
6x^{2}+7x+2=0
రెండు వైపులా 2ని జోడించండి.
x=\frac{-7±\sqrt{7^{2}-4\times 6\times 2}}{2\times 6}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 6, b స్థానంలో 7 మరియు c స్థానంలో 2 ప్రతిక్షేపించండి.
x=\frac{-7±\sqrt{49-4\times 6\times 2}}{2\times 6}
7 వర్గము.
x=\frac{-7±\sqrt{49-24\times 2}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-7±\sqrt{49-48}}{2\times 6}
-24 సార్లు 2ని గుణించండి.
x=\frac{-7±\sqrt{1}}{2\times 6}
-48కు 49ని కూడండి.
x=\frac{-7±1}{2\times 6}
1 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-7±1}{12}
2 సార్లు 6ని గుణించండి.
x=-\frac{6}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-7±1}{12} సమీకరణాన్ని పరిష్కరించండి. 1కు -7ని కూడండి.
x=-\frac{1}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-6}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{8}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-7±1}{12} సమీకరణాన్ని పరిష్కరించండి. 1ని -7 నుండి వ్యవకలనం చేయండి.
x=-\frac{2}{3}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-8}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{1}{2} x=-\frac{2}{3}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
6x^{2}+12x-5x=-2
రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x^{2}+7x=-2
7xని పొందడం కోసం 12x మరియు -5xని జత చేయండి.
\frac{6x^{2}+7x}{6}=-\frac{2}{6}
రెండు వైపులా 6తో భాగించండి.
x^{2}+\frac{7}{6}x=-\frac{2}{6}
6తో భాగించడం ద్వారా 6 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{7}{6}x=-\frac{1}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-2}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(\frac{7}{12}\right)^{2}
x రాశి యొక్క గుణకము \frac{7}{6}ని 2తో భాగించి \frac{7}{12}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{7}{12} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{7}{12}ని వర్గము చేయండి.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{49}{144}కు -\frac{1}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{7}{12}\right)^{2}=\frac{1}{144}
కారకం x^{2}+\frac{7}{6}x+\frac{49}{144}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{7}{12}=\frac{1}{12} x+\frac{7}{12}=-\frac{1}{12}
సరళీకృతం చేయండి.
x=-\frac{1}{2} x=-\frac{2}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{7}{12}ని వ్యవకలనం చేయండి.