xని పరిష్కరించండి
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=7 ab=6\left(-20\right)=-120
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 6x^{2}+ax+bx-20 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -120ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-8 b=15
సమ్ 7ను అందించే పెయిర్ మన పరిష్కారం.
\left(6x^{2}-8x\right)+\left(15x-20\right)
\left(6x^{2}-8x\right)+\left(15x-20\right)ని 6x^{2}+7x-20 వలె తిరిగి వ్రాయండి.
2x\left(3x-4\right)+5\left(3x-4\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 5 ఫ్యాక్టర్ చేయండి.
\left(3x-4\right)\left(2x+5\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x-4ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=\frac{4}{3} x=-\frac{5}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x-4=0 మరియు 2x+5=0ని పరిష్కరించండి.
6x^{2}+7x-20=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-20\right)}}{2\times 6}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 6, b స్థానంలో 7 మరియు c స్థానంలో -20 ప్రతిక్షేపించండి.
x=\frac{-7±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
7 వర్గము.
x=\frac{-7±\sqrt{49-24\left(-20\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-7±\sqrt{49+480}}{2\times 6}
-24 సార్లు -20ని గుణించండి.
x=\frac{-7±\sqrt{529}}{2\times 6}
480కు 49ని కూడండి.
x=\frac{-7±23}{2\times 6}
529 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-7±23}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{16}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-7±23}{12} సమీకరణాన్ని పరిష్కరించండి. 23కు -7ని కూడండి.
x=\frac{4}{3}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{16}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{30}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-7±23}{12} సమీకరణాన్ని పరిష్కరించండి. 23ని -7 నుండి వ్యవకలనం చేయండి.
x=-\frac{5}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-30}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=\frac{4}{3} x=-\frac{5}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
6x^{2}+7x-20=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
6x^{2}+7x-20-\left(-20\right)=-\left(-20\right)
సమీకరణం యొక్క రెండు వైపులా 20ని కూడండి.
6x^{2}+7x=-\left(-20\right)
-20ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
6x^{2}+7x=20
-20ని 0 నుండి వ్యవకలనం చేయండి.
\frac{6x^{2}+7x}{6}=\frac{20}{6}
రెండు వైపులా 6తో భాగించండి.
x^{2}+\frac{7}{6}x=\frac{20}{6}
6తో భాగించడం ద్వారా 6 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{7}{6}x=\frac{10}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{20}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{10}{3}+\left(\frac{7}{12}\right)^{2}
x రాశి యొక్క గుణకము \frac{7}{6}ని 2తో భాగించి \frac{7}{12}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{7}{12} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{10}{3}+\frac{49}{144}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{7}{12}ని వర్గము చేయండి.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{529}{144}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{49}{144}కు \frac{10}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{7}{12}\right)^{2}=\frac{529}{144}
కారకం x^{2}+\frac{7}{6}x+\frac{49}{144}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{7}{12}=\frac{23}{12} x+\frac{7}{12}=-\frac{23}{12}
సరళీకృతం చేయండి.
x=\frac{4}{3} x=-\frac{5}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{7}{12}ని వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}