లబ్ధమూలము
12t\left(4-t\right)
మూల్యాంకనం చేయండి
12t\left(4-t\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
12\left(4t-t^{2}\right)
12 యొక్క లబ్ధమూలమును కనుగొనండి.
t\left(4-t\right)
4t-t^{2}ని పరిగణించండి. t యొక్క లబ్ధమూలమును కనుగొనండి.
12t\left(-t+4\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
-12t^{2}+48t=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
t=\frac{-48±\sqrt{48^{2}}}{2\left(-12\right)}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
t=\frac{-48±48}{2\left(-12\right)}
48^{2} వర్గమూలాన్ని తీసుకోండి.
t=\frac{-48±48}{-24}
2 సార్లు -12ని గుణించండి.
t=\frac{0}{-24}
ఇప్పుడు ± ధనాత్మకం అని భావించి t=\frac{-48±48}{-24} సమీకరణాన్ని పరిష్కరించండి. 48కు -48ని కూడండి.
t=0
-24తో 0ని భాగించండి.
t=-\frac{96}{-24}
ఇప్పుడు ± రుణాత్మకం అని భావించి t=\frac{-48±48}{-24} సమీకరణాన్ని పరిష్కరించండి. 48ని -48 నుండి వ్యవకలనం చేయండి.
t=4
-24తో -96ని భాగించండి.
-12t^{2}+48t=-12t\left(t-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 0ని మరియు x_{2} కోసం 4ని ప్రతిక్షేపించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}