మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4x-y=5,-4x+5y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x-y=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=y+5
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{4}\left(y+5\right)
రెండు వైపులా 4తో భాగించండి.
x=\frac{1}{4}y+\frac{5}{4}
\frac{1}{4} సార్లు y+5ని గుణించండి.
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
మరొక సమీకరణములో xను \frac{5+y}{4} స్థానంలో ప్రతిక్షేపించండి, -4x+5y=7.
-y-5+5y=7
-4 సార్లు \frac{5+y}{4}ని గుణించండి.
4y-5=7
5yకు -yని కూడండి.
4y=12
సమీకరణం యొక్క రెండు వైపులా 5ని కూడండి.
y=3
రెండు వైపులా 4తో భాగించండి.
x=\frac{1}{4}\times 3+\frac{5}{4}
x=\frac{1}{4}y+\frac{5}{4}లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{3+5}{4}
\frac{1}{4} సార్లు 3ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{3}{4}కు \frac{5}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x-y=5,-4x+5y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x-y=5,-4x+5y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
4x మరియు -4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
-16x+4y=-20,-16x+20y=28
సరళీకృతం చేయండి.
-16x+16x+4y-20y=-20-28
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -16x+20y=28ని -16x+4y=-20 నుండి వ్యవకలనం చేయండి.
4y-20y=-20-28
16xకు -16xని కూడండి. -16x మరియు 16x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-16y=-20-28
-20yకు 4yని కూడండి.
-16y=-48
-28కు -20ని కూడండి.
y=3
రెండు వైపులా -16తో భాగించండి.
-4x+5\times 3=7
-4x+5y=7లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-4x+15=7
5 సార్లు 3ని గుణించండి.
-4x=-8
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా -4తో భాగించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.