xని పరిష్కరించండి
x=\frac{1}{2}=0.5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=-4 ab=4\times 1=4
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 4x^{2}+ax+bx+1 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-4 -2,-2
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 4ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-4=-5 -2-2=-4
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-2 b=-2
సమ్ -4ను అందించే పెయిర్ మన పరిష్కారం.
\left(4x^{2}-2x\right)+\left(-2x+1\right)
\left(4x^{2}-2x\right)+\left(-2x+1\right)ని 4x^{2}-4x+1 వలె తిరిగి వ్రాయండి.
2x\left(2x-1\right)-\left(2x-1\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(2x-1\right)\left(2x-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2x-1ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(2x-1\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=\frac{1}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 2x-1=0ని పరిష్కరించండి.
4x^{2}-4x+1=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 4, b స్థానంలో -4 మరియు c స్థానంలో 1 ప్రతిక్షేపించండి.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
-4 వర్గము.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
-4 సార్లు 4ని గుణించండి.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
-16కు 16ని కూడండి.
x=-\frac{-4}{2\times 4}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{4}{2\times 4}
-4 సంఖ్య యొక్క వ్యతిరేకం 4.
x=\frac{4}{8}
2 సార్లు 4ని గుణించండి.
x=\frac{1}{2}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{4}{8} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
4x^{2}-4x+1=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
4x^{2}-4x+1-1=-1
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
4x^{2}-4x=-1
1ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
\frac{4x^{2}-4x}{4}=-\frac{1}{4}
రెండు వైపులా 4తో భాగించండి.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{1}{4}
4తో భాగించడం ద్వారా 4 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-x=-\frac{1}{4}
4తో -4ని భాగించండి.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము -1ని 2తో భాగించి -\frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{1}{2}ని వర్గము చేయండి.
x^{2}-x+\frac{1}{4}=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{4}కు -\frac{1}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x-\frac{1}{2}\right)^{2}=0
కారకం x^{2}-x+\frac{1}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
సరళీకృతం చేయండి.
x=\frac{1}{2} x=\frac{1}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{1}{2}ని కూడండి.
x=\frac{1}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}