మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=20 ab=4\times 25=100
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 4x^{2}+ax+bx+25 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,100 2,50 4,25 5,20 10,10
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 100ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=10 b=10
సమ్ 20ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(4x^{2}+10x\right)+\left(10x+25\right)
\left(4x^{2}+10x\right)+\left(10x+25\right)ని 4x^{2}+20x+25 వలె తిరిగి వ్రాయండి.
2x\left(2x+5\right)+5\left(2x+5\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 5 ఫ్యాక్టర్ చేయండి.
\left(2x+5\right)\left(2x+5\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2x+5ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(2x+5\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
factor(4x^{2}+20x+25)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
gcf(4,20,25)=1
గుణకముల యొక్క అతిపెద్ద ఉమ్మడి లబ్ధిమూలమును కనుగొనండి.
\sqrt{4x^{2}}=2x
ప్రధాన విలువ యొక్క వర్గమూలమును కనుగొనండి, 4x^{2}.
\sqrt{25}=5
చివరి విలువ యొక్క వర్గమూలమును కనుగొనండి, 25.
\left(2x+5\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
4x^{2}+20x+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-20±\sqrt{20^{2}-4\times 4\times 25}}{2\times 4}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-20±\sqrt{400-4\times 4\times 25}}{2\times 4}
20 వర్గము.
x=\frac{-20±\sqrt{400-16\times 25}}{2\times 4}
-4 సార్లు 4ని గుణించండి.
x=\frac{-20±\sqrt{400-400}}{2\times 4}
-16 సార్లు 25ని గుణించండి.
x=\frac{-20±\sqrt{0}}{2\times 4}
-400కు 400ని కూడండి.
x=\frac{-20±0}{2\times 4}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-20±0}{8}
2 సార్లు 4ని గుణించండి.
4x^{2}+20x+25=4\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -\frac{5}{2}ని మరియు x_{2} కోసం -\frac{5}{2}ని ప్రతిక్షేపించండి.
4x^{2}+20x+25=4\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
4x^{2}+20x+25=4\times \frac{2x+5}{2}\left(x+\frac{5}{2}\right)
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{5}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
4x^{2}+20x+25=4\times \frac{2x+5}{2}\times \frac{2x+5}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{5}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
4x^{2}+20x+25=4\times \frac{\left(2x+5\right)\left(2x+5\right)}{2\times 2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{2x+5}{2} సార్లు \frac{2x+5}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
4x^{2}+20x+25=4\times \frac{\left(2x+5\right)\left(2x+5\right)}{4}
2 సార్లు 2ని గుణించండి.
4x^{2}+20x+25=\left(2x+5\right)\left(2x+5\right)
4 మరియు 4లో అతిపెద్ద ఉమ్మడి కారకము 4ను తీసివేయండి.