x, yని పరిష్కరించండి
x=\frac{9}{13}\approx 0.692307692
y=-\frac{5}{13}\approx -0.384615385
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x-5y=4,9x-2y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-5y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=5y+4
సమీకరణం యొక్క రెండు వైపులా 5yని కూడండి.
x=\frac{1}{3}\left(5y+4\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{5}{3}y+\frac{4}{3}
\frac{1}{3} సార్లు 5y+4ని గుణించండి.
9\left(\frac{5}{3}y+\frac{4}{3}\right)-2y=7
మరొక సమీకరణములో xను \frac{5y+4}{3} స్థానంలో ప్రతిక్షేపించండి, 9x-2y=7.
15y+12-2y=7
9 సార్లు \frac{5y+4}{3}ని గుణించండి.
13y+12=7
-2yకు 15yని కూడండి.
13y=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
y=-\frac{5}{13}
రెండు వైపులా 13తో భాగించండి.
x=\frac{5}{3}\left(-\frac{5}{13}\right)+\frac{4}{3}
x=\frac{5}{3}y+\frac{4}{3}లో yను -\frac{5}{13} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{25}{39}+\frac{4}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{5}{3} సార్లు -\frac{5}{13}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{9}{13}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{25}{39}కు \frac{4}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{9}{13},y=-\frac{5}{13}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-5y=4,9x-2y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 9\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 9\right)}\\-\frac{9}{3\left(-2\right)-\left(-5\times 9\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 9\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}&\frac{5}{39}\\-\frac{3}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}\times 4+\frac{5}{39}\times 7\\-\frac{3}{13}\times 4+\frac{1}{13}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}\\-\frac{5}{13}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{9}{13},y=-\frac{5}{13}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-5y=4,9x-2y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
9\times 3x+9\left(-5\right)y=9\times 4,3\times 9x+3\left(-2\right)y=3\times 7
3x మరియు 9xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 9తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
27x-45y=36,27x-6y=21
సరళీకృతం చేయండి.
27x-27x-45y+6y=36-21
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 27x-6y=21ని 27x-45y=36 నుండి వ్యవకలనం చేయండి.
-45y+6y=36-21
-27xకు 27xని కూడండి. 27x మరియు -27x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-39y=36-21
6yకు -45yని కూడండి.
-39y=15
-21కు 36ని కూడండి.
y=-\frac{5}{13}
రెండు వైపులా -39తో భాగించండి.
9x-2\left(-\frac{5}{13}\right)=7
9x-2y=7లో yను -\frac{5}{13} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
9x+\frac{10}{13}=7
-2 సార్లు -\frac{5}{13}ని గుణించండి.
9x=\frac{81}{13}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{10}{13}ని వ్యవకలనం చేయండి.
x=\frac{9}{13}
రెండు వైపులా 9తో భాగించండి.
x=\frac{9}{13},y=-\frac{5}{13}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}