మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=8 ab=3\times 4=12
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 3x^{2}+ax+bx+4 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,12 2,6 3,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+12=13 2+6=8 3+4=7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=2 b=6
సమ్ 8ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(3x^{2}+2x\right)+\left(6x+4\right)
\left(3x^{2}+2x\right)+\left(6x+4\right)ని 3x^{2}+8x+4 వలె తిరిగి వ్రాయండి.
x\left(3x+2\right)+2\left(3x+2\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(3x+2\right)\left(x+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x+2ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=-\frac{2}{3} x=-2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x+2=0 మరియు x+2=0ని పరిష్కరించండి.
3x^{2}+8x+4=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-8±\sqrt{8^{2}-4\times 3\times 4}}{2\times 3}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 3, b స్థానంలో 8 మరియు c స్థానంలో 4 ప్రతిక్షేపించండి.
x=\frac{-8±\sqrt{64-4\times 3\times 4}}{2\times 3}
8 వర్గము.
x=\frac{-8±\sqrt{64-12\times 4}}{2\times 3}
-4 సార్లు 3ని గుణించండి.
x=\frac{-8±\sqrt{64-48}}{2\times 3}
-12 సార్లు 4ని గుణించండి.
x=\frac{-8±\sqrt{16}}{2\times 3}
-48కు 64ని కూడండి.
x=\frac{-8±4}{2\times 3}
16 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-8±4}{6}
2 సార్లు 3ని గుణించండి.
x=-\frac{4}{6}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-8±4}{6} సమీకరణాన్ని పరిష్కరించండి. 4కు -8ని కూడండి.
x=-\frac{2}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-4}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{12}{6}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-8±4}{6} సమీకరణాన్ని పరిష్కరించండి. 4ని -8 నుండి వ్యవకలనం చేయండి.
x=-2
6తో -12ని భాగించండి.
x=-\frac{2}{3} x=-2
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
3x^{2}+8x+4=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
3x^{2}+8x+4-4=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
3x^{2}+8x=-4
4ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
\frac{3x^{2}+8x}{3}=-\frac{4}{3}
రెండు వైపులా 3తో భాగించండి.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
3తో భాగించడం ద్వారా 3 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
x రాశి యొక్క గుణకము \frac{8}{3}ని 2తో భాగించి \frac{4}{3}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{4}{3} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{4}{3}ని వర్గము చేయండి.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{16}{9}కు -\frac{4}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
కారకం x^{2}+\frac{8}{3}x+\frac{16}{9}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
సరళీకృతం చేయండి.
x=-\frac{2}{3} x=-2
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{4}{3}ని వ్యవకలనం చేయండి.