మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x^{2}+4x+\frac{4}{3}=0
x+\frac{1}{3}తో 4ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
x=\frac{-4±\sqrt{4^{2}-4\times 3\times \frac{4}{3}}}{2\times 3}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 3, b స్థానంలో 4 మరియు c స్థానంలో \frac{4}{3} ప్రతిక్షేపించండి.
x=\frac{-4±\sqrt{16-4\times 3\times \frac{4}{3}}}{2\times 3}
4 వర్గము.
x=\frac{-4±\sqrt{16-12\times \frac{4}{3}}}{2\times 3}
-4 సార్లు 3ని గుణించండి.
x=\frac{-4±\sqrt{16-16}}{2\times 3}
-12 సార్లు \frac{4}{3}ని గుణించండి.
x=\frac{-4±\sqrt{0}}{2\times 3}
-16కు 16ని కూడండి.
x=-\frac{4}{2\times 3}
0 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{4}{6}
2 సార్లు 3ని గుణించండి.
x=-\frac{2}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-4}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
3x^{2}+4x+\frac{4}{3}=0
x+\frac{1}{3}తో 4ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}+4x=-\frac{4}{3}
రెండు భాగాల నుండి \frac{4}{3}ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
\frac{3x^{2}+4x}{3}=-\frac{\frac{4}{3}}{3}
రెండు వైపులా 3తో భాగించండి.
x^{2}+\frac{4}{3}x=-\frac{\frac{4}{3}}{3}
3తో భాగించడం ద్వారా 3 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{4}{3}x=-\frac{4}{9}
3తో -\frac{4}{3}ని భాగించండి.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(\frac{2}{3}\right)^{2}
x రాశి యొక్క గుణకము \frac{4}{3}ని 2తో భాగించి \frac{2}{3}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{2}{3} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{-4+4}{9}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{2}{3}ని వర్గము చేయండి.
x^{2}+\frac{4}{3}x+\frac{4}{9}=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{4}{9}కు -\frac{4}{9}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{2}{3}\right)^{2}=0
కారకం x^{2}+\frac{4}{3}x+\frac{4}{9}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{2}{3}=0 x+\frac{2}{3}=0
సరళీకృతం చేయండి.
x=-\frac{2}{3} x=-\frac{2}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{3}ని వ్యవకలనం చేయండి.
x=-\frac{2}{3}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.