మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=25 ab=3\times 42=126
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 3x^{2}+ax+bx+42 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,126 2,63 3,42 6,21 7,18 9,14
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 126ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+126=127 2+63=65 3+42=45 6+21=27 7+18=25 9+14=23
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=7 b=18
సమ్ 25ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(3x^{2}+7x\right)+\left(18x+42\right)
\left(3x^{2}+7x\right)+\left(18x+42\right)ని 3x^{2}+25x+42 వలె తిరిగి వ్రాయండి.
x\left(3x+7\right)+6\left(3x+7\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(3x+7\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x+7ని ఫ్యాక్టర్ అవుట్ చేయండి.
3x^{2}+25x+42=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-25±\sqrt{25^{2}-4\times 3\times 42}}{2\times 3}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-25±\sqrt{625-4\times 3\times 42}}{2\times 3}
25 వర్గము.
x=\frac{-25±\sqrt{625-12\times 42}}{2\times 3}
-4 సార్లు 3ని గుణించండి.
x=\frac{-25±\sqrt{625-504}}{2\times 3}
-12 సార్లు 42ని గుణించండి.
x=\frac{-25±\sqrt{121}}{2\times 3}
-504కు 625ని కూడండి.
x=\frac{-25±11}{2\times 3}
121 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-25±11}{6}
2 సార్లు 3ని గుణించండి.
x=-\frac{14}{6}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-25±11}{6} సమీకరణాన్ని పరిష్కరించండి. 11కు -25ని కూడండి.
x=-\frac{7}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-14}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{36}{6}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-25±11}{6} సమీకరణాన్ని పరిష్కరించండి. 11ని -25 నుండి వ్యవకలనం చేయండి.
x=-6
6తో -36ని భాగించండి.
3x^{2}+25x+42=3\left(x-\left(-\frac{7}{3}\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -\frac{7}{3}ని మరియు x_{2} కోసం -6ని ప్రతిక్షేపించండి.
3x^{2}+25x+42=3\left(x+\frac{7}{3}\right)\left(x+6\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
3x^{2}+25x+42=3\times \frac{3x+7}{3}\left(x+6\right)
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{7}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
3x^{2}+25x+42=\left(3x+7\right)\left(x+6\right)
3 మరియు 3లో అతిపెద్ద ఉమ్మడి కారకము 3ను తీసివేయండి.