మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

9x-2y=12
రెండవ సమీకరణాన్ని పరిగణించండి. అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
3x+2y=12,9x-2y=12
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+2y=12
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-2y+12
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-2y+12\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{2}{3}y+4
\frac{1}{3} సార్లు -2y+12ని గుణించండి.
9\left(-\frac{2}{3}y+4\right)-2y=12
మరొక సమీకరణములో xను -\frac{2y}{3}+4 స్థానంలో ప్రతిక్షేపించండి, 9x-2y=12.
-6y+36-2y=12
9 సార్లు -\frac{2y}{3}+4ని గుణించండి.
-8y+36=12
-2yకు -6yని కూడండి.
-8y=-24
సమీకరణము యొక్క రెండు భాగాల నుండి 36ని వ్యవకలనం చేయండి.
y=3
రెండు వైపులా -8తో భాగించండి.
x=-\frac{2}{3}\times 3+4
x=-\frac{2}{3}y+4లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-2+4
-\frac{2}{3} సార్లు 3ని గుణించండి.
x=2
-2కు 4ని కూడండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
9x-2y=12
రెండవ సమీకరణాన్ని పరిగణించండి. అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
3x+2y=12,9x-2y=12
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
\left(\begin{matrix}3&2\\9&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-2\times 9}&-\frac{2}{3\left(-2\right)-2\times 9}\\-\frac{9}{3\left(-2\right)-2\times 9}&\frac{3}{3\left(-2\right)-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 12+\frac{1}{12}\times 12\\\frac{3}{8}\times 12-\frac{1}{8}\times 12\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
9x-2y=12
రెండవ సమీకరణాన్ని పరిగణించండి. అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
3x+2y=12,9x-2y=12
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
9\times 3x+9\times 2y=9\times 12,3\times 9x+3\left(-2\right)y=3\times 12
3x మరియు 9xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 9తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
27x+18y=108,27x-6y=36
సరళీకృతం చేయండి.
27x-27x+18y+6y=108-36
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 27x-6y=36ని 27x+18y=108 నుండి వ్యవకలనం చేయండి.
18y+6y=108-36
-27xకు 27xని కూడండి. 27x మరియు -27x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
24y=108-36
6yకు 18yని కూడండి.
24y=72
-36కు 108ని కూడండి.
y=3
రెండు వైపులా 24తో భాగించండి.
9x-2\times 3=12
9x-2y=12లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
9x-6=12
-2 సార్లు 3ని గుణించండి.
9x=18
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=2
రెండు వైపులా 9తో భాగించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.