xని పరిష్కరించండి
x = -\frac{31}{6} = -5\frac{1}{6} \approx -5.166666667
x=4
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x^{2}+3.5x+1=63
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
3x^{2}+3.5x+1-63=63-63
సమీకరణము యొక్క రెండు భాగాల నుండి 63ని వ్యవకలనం చేయండి.
3x^{2}+3.5x+1-63=0
63ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
3x^{2}+3.5x-62=0
63ని 1 నుండి వ్యవకలనం చేయండి.
x=\frac{-3.5±\sqrt{3.5^{2}-4\times 3\left(-62\right)}}{2\times 3}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 3, b స్థానంలో 3.5 మరియు c స్థానంలో -62 ప్రతిక్షేపించండి.
x=\frac{-3.5±\sqrt{12.25-4\times 3\left(-62\right)}}{2\times 3}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా 3.5ని వర్గము చేయండి.
x=\frac{-3.5±\sqrt{12.25-12\left(-62\right)}}{2\times 3}
-4 సార్లు 3ని గుణించండి.
x=\frac{-3.5±\sqrt{12.25+744}}{2\times 3}
-12 సార్లు -62ని గుణించండి.
x=\frac{-3.5±\sqrt{756.25}}{2\times 3}
744కు 12.25ని కూడండి.
x=\frac{-3.5±\frac{55}{2}}{2\times 3}
756.25 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-3.5±\frac{55}{2}}{6}
2 సార్లు 3ని గుణించండి.
x=\frac{24}{6}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-3.5±\frac{55}{2}}{6} సమీకరణాన్ని పరిష్కరించండి. ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{55}{2}కు -3.5ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4
6తో 24ని భాగించండి.
x=-\frac{31}{6}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-3.5±\frac{55}{2}}{6} సమీకరణాన్ని పరిష్కరించండి. ఉమ్మడి హారమును కనుగొని, లవములను వ్యవకలనం చేయడం ద్వారా \frac{55}{2}ని -3.5 నుండి వ్యవకలనం చేయండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4 x=-\frac{31}{6}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
3x^{2}+3.5x+1=63
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
3x^{2}+3.5x+1-1=63-1
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
3x^{2}+3.5x=63-1
1ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
3x^{2}+3.5x=62
1ని 63 నుండి వ్యవకలనం చేయండి.
\frac{3x^{2}+3.5x}{3}=\frac{62}{3}
రెండు వైపులా 3తో భాగించండి.
x^{2}+\frac{3.5}{3}x=\frac{62}{3}
3తో భాగించడం ద్వారా 3 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{7}{6}x=\frac{62}{3}
3తో 3.5ని భాగించండి.
x^{2}+\frac{7}{6}x+\frac{7}{12}^{2}=\frac{62}{3}+\frac{7}{12}^{2}
x రాశి యొక్క గుణకము \frac{7}{6}ని 2తో భాగించి \frac{7}{12}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{7}{12} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{62}{3}+\frac{49}{144}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{7}{12}ని వర్గము చేయండి.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{3025}{144}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{49}{144}కు \frac{62}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{7}{12}\right)^{2}=\frac{3025}{144}
కారకం x^{2}+\frac{7}{6}x+\frac{49}{144}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{3025}{144}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{7}{12}=\frac{55}{12} x+\frac{7}{12}=-\frac{55}{12}
సరళీకృతం చేయండి.
x=4 x=-\frac{31}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{7}{12}ని వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}