మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3\times 3\sqrt{3}-2\left(1+\sqrt{9}+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
కారకం 27=3^{2}\times 3. ప్రాడక్ట్ \sqrt{3^{2}\times 3} యొక్క స్క్వేర్ రూట్‌ను స్క్వేర్ రూట్స్ \sqrt{3^{2}}\sqrt{3} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి. 3^{2} వర్గమూలాన్ని తీసుకోండి.
9\sqrt{3}-2\left(1+\sqrt{9}+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
9ని పొందడం కోసం 3 మరియు 3ని గుణించండి.
9\sqrt{3}-2\left(1+3+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
9 యొక్క వర్గ మూలమును గణించండి మరియు 3ని పొందండి.
9\sqrt{3}-2\left(4+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
4ని పొందడం కోసం 1 మరియు 3ని కూడండి.
9\sqrt{3}-2\left(4+2\times 3\sqrt{3}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
కారకం 27=3^{2}\times 3. ప్రాడక్ట్ \sqrt{3^{2}\times 3} యొక్క స్క్వేర్ రూట్‌ను స్క్వేర్ రూట్స్ \sqrt{3^{2}}\sqrt{3} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి. 3^{2} వర్గమూలాన్ని తీసుకోండి.
9\sqrt{3}-2\left(4+6\sqrt{3}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
6ని పొందడం కోసం 2 మరియు 3ని గుణించండి.
9\sqrt{3}-2\left(4+6\sqrt{3}+6-2\sqrt{3}-\sqrt{4}-18\right)
36 యొక్క వర్గ మూలమును గణించండి మరియు 6ని పొందండి.
9\sqrt{3}-2\left(10+6\sqrt{3}-2\sqrt{3}-\sqrt{4}-18\right)
10ని పొందడం కోసం 4 మరియు 6ని కూడండి.
9\sqrt{3}-2\left(10+4\sqrt{3}-\sqrt{4}-18\right)
4\sqrt{3}ని పొందడం కోసం 6\sqrt{3} మరియు -2\sqrt{3}ని జత చేయండి.
9\sqrt{3}-2\left(10+4\sqrt{3}-2-18\right)
4 యొక్క వర్గ మూలమును గణించండి మరియు 2ని పొందండి.
9\sqrt{3}-2\left(8+4\sqrt{3}-18\right)
8ని పొందడం కోసం 2ని 10 నుండి వ్యవకలనం చేయండి.
9\sqrt{3}-2\left(-10+4\sqrt{3}\right)
-10ని పొందడం కోసం 18ని 8 నుండి వ్యవకలనం చేయండి.
9\sqrt{3}+20-8\sqrt{3}
-10+4\sqrt{3}తో -2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\sqrt{3}+20
\sqrt{3}ని పొందడం కోసం 9\sqrt{3} మరియు -8\sqrt{3}ని జత చేయండి.