లబ్ధమూలము
3\left(3x+2\right)^{2}
మూల్యాంకనం చేయండి
3\left(3x+2\right)^{2}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3\left(9x^{2}+12x+4\right)
3 యొక్క లబ్ధమూలమును కనుగొనండి.
\left(3x+2\right)^{2}
9x^{2}+12x+4ని పరిగణించండి. పర్ఫెక్ట్ స్క్వేర్ ఫార్ములా a^{2}+2ab+b^{2}=\left(a+b\right)^{2}ను ఉపయోగించండి, ఇందులో a=3x, b=2.
3\left(3x+2\right)^{2}
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
factor(27x^{2}+36x+12)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
gcf(27,36,12)=3
గుణకముల యొక్క అతిపెద్ద ఉమ్మడి లబ్ధిమూలమును కనుగొనండి.
3\left(9x^{2}+12x+4\right)
3 యొక్క లబ్ధమూలమును కనుగొనండి.
\sqrt{9x^{2}}=3x
ప్రధాన విలువ యొక్క వర్గమూలమును కనుగొనండి, 9x^{2}.
\sqrt{4}=2
చివరి విలువ యొక్క వర్గమూలమును కనుగొనండి, 4.
3\left(3x+2\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
27x^{2}+36x+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-36±\sqrt{36^{2}-4\times 27\times 12}}{2\times 27}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-36±\sqrt{1296-4\times 27\times 12}}{2\times 27}
36 వర్గము.
x=\frac{-36±\sqrt{1296-108\times 12}}{2\times 27}
-4 సార్లు 27ని గుణించండి.
x=\frac{-36±\sqrt{1296-1296}}{2\times 27}
-108 సార్లు 12ని గుణించండి.
x=\frac{-36±\sqrt{0}}{2\times 27}
-1296కు 1296ని కూడండి.
x=\frac{-36±0}{2\times 27}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-36±0}{54}
2 సార్లు 27ని గుణించండి.
27x^{2}+36x+12=27\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -\frac{2}{3}ని మరియు x_{2} కోసం -\frac{2}{3}ని ప్రతిక్షేపించండి.
27x^{2}+36x+12=27\left(x+\frac{2}{3}\right)\left(x+\frac{2}{3}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
27x^{2}+36x+12=27\times \frac{3x+2}{3}\left(x+\frac{2}{3}\right)
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
27x^{2}+36x+12=27\times \frac{3x+2}{3}\times \frac{3x+2}{3}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
27x^{2}+36x+12=27\times \frac{\left(3x+2\right)\left(3x+2\right)}{3\times 3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3x+2}{3} సార్లు \frac{3x+2}{3}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
27x^{2}+36x+12=27\times \frac{\left(3x+2\right)\left(3x+2\right)}{9}
3 సార్లు 3ని గుణించండి.
27x^{2}+36x+12=3\left(3x+2\right)\left(3x+2\right)
27 మరియు 9లో అతిపెద్ద ఉమ్మడి కారకము 9ను తీసివేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}