xని పరిష్కరించండి
x=-2
x=6
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x^{2}-4x-12=0
రెండు వైపులా 2తో భాగించండి.
a+b=-4 ab=1\left(-12\right)=-12
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-12 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,-12 2,-6 3,-4
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -12ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1-12=-11 2-6=-4 3-4=-1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-6 b=2
సమ్ -4ను అందించే పెయిర్ మన పరిష్కారం.
\left(x^{2}-6x\right)+\left(2x-12\right)
\left(x^{2}-6x\right)+\left(2x-12\right)ని x^{2}-4x-12 వలె తిరిగి వ్రాయండి.
x\left(x-6\right)+2\left(x-6\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(x-6\right)\left(x+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-6ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=6 x=-2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-6=0 మరియు x+2=0ని పరిష్కరించండి.
2x^{2}-8x-24=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 2, b స్థానంలో -8 మరియు c స్థానంలో -24 ప్రతిక్షేపించండి.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
-8 వర్గము.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
-8 సార్లు -24ని గుణించండి.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
192కు 64ని కూడండి.
x=\frac{-\left(-8\right)±16}{2\times 2}
256 వర్గమూలాన్ని తీసుకోండి.
x=\frac{8±16}{2\times 2}
-8 సంఖ్య యొక్క వ్యతిరేకం 8.
x=\frac{8±16}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{24}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{8±16}{4} సమీకరణాన్ని పరిష్కరించండి. 16కు 8ని కూడండి.
x=6
4తో 24ని భాగించండి.
x=-\frac{8}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{8±16}{4} సమీకరణాన్ని పరిష్కరించండి. 16ని 8 నుండి వ్యవకలనం చేయండి.
x=-2
4తో -8ని భాగించండి.
x=6 x=-2
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
2x^{2}-8x-24=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
2x^{2}-8x-24-\left(-24\right)=-\left(-24\right)
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
2x^{2}-8x=-\left(-24\right)
-24ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
2x^{2}-8x=24
-24ని 0 నుండి వ్యవకలనం చేయండి.
\frac{2x^{2}-8x}{2}=\frac{24}{2}
రెండు వైపులా 2తో భాగించండి.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{24}{2}
2తో భాగించడం ద్వారా 2 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-4x=\frac{24}{2}
2తో -8ని భాగించండి.
x^{2}-4x=12
2తో 24ని భాగించండి.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
x రాశి యొక్క గుణకము -4ని 2తో భాగించి -2ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -2 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-4x+4=12+4
-2 వర్గము.
x^{2}-4x+4=16
4కు 12ని కూడండి.
\left(x-2\right)^{2}=16
కారకం x^{2}-4x+4. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-2=4 x-2=-4
సరళీకృతం చేయండి.
x=6 x=-2
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}