మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2\left(x^{2}+10x+24\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=10 ab=1\times 24=24
x^{2}+10x+24ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx+24 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,24 2,12 3,8 4,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 24ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+24=25 2+12=14 3+8=11 4+6=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=4 b=6
సమ్ 10ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}+4x\right)+\left(6x+24\right)
\left(x^{2}+4x\right)+\left(6x+24\right)ని x^{2}+10x+24 వలె తిరిగి వ్రాయండి.
x\left(x+4\right)+6\left(x+4\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(x+4\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+4ని ఫ్యాక్టర్ అవుట్ చేయండి.
2\left(x+4\right)\left(x+6\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
2x^{2}+20x+48=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 48}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-20±\sqrt{400-4\times 2\times 48}}{2\times 2}
20 వర్గము.
x=\frac{-20±\sqrt{400-8\times 48}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-20±\sqrt{400-384}}{2\times 2}
-8 సార్లు 48ని గుణించండి.
x=\frac{-20±\sqrt{16}}{2\times 2}
-384కు 400ని కూడండి.
x=\frac{-20±4}{2\times 2}
16 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-20±4}{4}
2 సార్లు 2ని గుణించండి.
x=-\frac{16}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-20±4}{4} సమీకరణాన్ని పరిష్కరించండి. 4కు -20ని కూడండి.
x=-4
4తో -16ని భాగించండి.
x=-\frac{24}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-20±4}{4} సమీకరణాన్ని పరిష్కరించండి. 4ని -20 నుండి వ్యవకలనం చేయండి.
x=-6
4తో -24ని భాగించండి.
2x^{2}+20x+48=2\left(x-\left(-4\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -4ని మరియు x_{2} కోసం -6ని ప్రతిక్షేపించండి.
2x^{2}+20x+48=2\left(x+4\right)\left(x+6\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.