మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x^{2}+2x+2=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 2}}{2\times 2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 2, b స్థానంలో 2 మరియు c స్థానంలో 2 ప్రతిక్షేపించండి.
x=\frac{-2±\sqrt{4-4\times 2\times 2}}{2\times 2}
2 వర్గము.
x=\frac{-2±\sqrt{4-8\times 2}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-2±\sqrt{4-16}}{2\times 2}
-8 సార్లు 2ని గుణించండి.
x=\frac{-2±\sqrt{-12}}{2\times 2}
-16కు 4ని కూడండి.
x=\frac{-2±2\sqrt{3}i}{2\times 2}
-12 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-2±2\sqrt{3}i}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{-2+2\sqrt{3}i}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-2±2\sqrt{3}i}{4} సమీకరణాన్ని పరిష్కరించండి. 2i\sqrt{3}కు -2ని కూడండి.
x=\frac{-1+\sqrt{3}i}{2}
4తో -2+2i\sqrt{3}ని భాగించండి.
x=\frac{-2\sqrt{3}i-2}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-2±2\sqrt{3}i}{4} సమీకరణాన్ని పరిష్కరించండి. 2i\sqrt{3}ని -2 నుండి వ్యవకలనం చేయండి.
x=\frac{-\sqrt{3}i-1}{2}
4తో -2-2i\sqrt{3}ని భాగించండి.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
2x^{2}+2x+2=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
2x^{2}+2x+2-2=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
2x^{2}+2x=-2
2ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
\frac{2x^{2}+2x}{2}=-\frac{2}{2}
రెండు వైపులా 2తో భాగించండి.
x^{2}+\frac{2}{2}x=-\frac{2}{2}
2తో భాగించడం ద్వారా 2 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+x=-\frac{2}{2}
2తో 2ని భాగించండి.
x^{2}+x=-1
2తో -2ని భాగించండి.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము 1ని 2తో భాగించి \frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{1}{2}ని వర్గము చేయండి.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
\frac{1}{4}కు -1ని కూడండి.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
కారకం x^{2}+x+\frac{1}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
సరళీకృతం చేయండి.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{2}ని వ్యవకలనం చేయండి.