మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2\left(x^{2}+8x+12\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=8 ab=1\times 12=12
x^{2}+8x+12ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx+12 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,12 2,6 3,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+12=13 2+6=8 3+4=7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=2 b=6
సమ్ 8ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}+2x\right)+\left(6x+12\right)
\left(x^{2}+2x\right)+\left(6x+12\right)ని x^{2}+8x+12 వలె తిరిగి వ్రాయండి.
x\left(x+2\right)+6\left(x+2\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(x+2\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+2ని ఫ్యాక్టర్ అవుట్ చేయండి.
2\left(x+2\right)\left(x+6\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
2x^{2}+16x+24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 24}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-16±\sqrt{256-4\times 2\times 24}}{2\times 2}
16 వర్గము.
x=\frac{-16±\sqrt{256-8\times 24}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-16±\sqrt{256-192}}{2\times 2}
-8 సార్లు 24ని గుణించండి.
x=\frac{-16±\sqrt{64}}{2\times 2}
-192కు 256ని కూడండి.
x=\frac{-16±8}{2\times 2}
64 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-16±8}{4}
2 సార్లు 2ని గుణించండి.
x=-\frac{8}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-16±8}{4} సమీకరణాన్ని పరిష్కరించండి. 8కు -16ని కూడండి.
x=-2
4తో -8ని భాగించండి.
x=-\frac{24}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-16±8}{4} సమీకరణాన్ని పరిష్కరించండి. 8ని -16 నుండి వ్యవకలనం చేయండి.
x=-6
4తో -24ని భాగించండి.
2x^{2}+16x+24=2\left(x-\left(-2\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -2ని మరియు x_{2} కోసం -6ని ప్రతిక్షేపించండి.
2x^{2}+16x+24=2\left(x+2\right)\left(x+6\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.