మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x^{2}+2x-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-4\right)}}{2\times 3}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-2±\sqrt{4-4\times 3\left(-4\right)}}{2\times 3}
2 వర్గము.
x=\frac{-2±\sqrt{4-12\left(-4\right)}}{2\times 3}
-4 సార్లు 3ని గుణించండి.
x=\frac{-2±\sqrt{4+48}}{2\times 3}
-12 సార్లు -4ని గుణించండి.
x=\frac{-2±\sqrt{52}}{2\times 3}
48కు 4ని కూడండి.
x=\frac{-2±2\sqrt{13}}{2\times 3}
52 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-2±2\sqrt{13}}{6}
2 సార్లు 3ని గుణించండి.
x=\frac{2\sqrt{13}-2}{6}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-2±2\sqrt{13}}{6} సమీకరణాన్ని పరిష్కరించండి. 2\sqrt{13}కు -2ని కూడండి.
x=\frac{\sqrt{13}-1}{3}
6తో -2+2\sqrt{13}ని భాగించండి.
x=\frac{-2\sqrt{13}-2}{6}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-2±2\sqrt{13}}{6} సమీకరణాన్ని పరిష్కరించండి. 2\sqrt{13}ని -2 నుండి వ్యవకలనం చేయండి.
x=\frac{-\sqrt{13}-1}{3}
6తో -2-2\sqrt{13}ని భాగించండి.
3x^{2}+2x-4=3\left(x-\frac{\sqrt{13}-1}{3}\right)\left(x-\frac{-\sqrt{13}-1}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం \frac{-1+\sqrt{13}}{3}ని మరియు x_{2} కోసం \frac{-1-\sqrt{13}}{3}ని ప్రతిక్షేపించండి.