లబ్ధమూలము
2\left(u-15\right)\left(u-2\right)
మూల్యాంకనం చేయండి
2\left(u-15\right)\left(u-2\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2\left(u^{2}-17u+30\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=-17 ab=1\times 30=30
u^{2}-17u+30ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని u^{2}+au+bu+30 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-30 -2,-15 -3,-10 -5,-6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 30ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-15 b=-2
సమ్ -17ను అందించే పెయిర్ మన పరిష్కారం.
\left(u^{2}-15u\right)+\left(-2u+30\right)
\left(u^{2}-15u\right)+\left(-2u+30\right)ని u^{2}-17u+30 వలె తిరిగి వ్రాయండి.
u\left(u-15\right)-2\left(u-15\right)
మొదటి సమూహంలో u మరియు రెండవ సమూహంలో -2 ఫ్యాక్టర్ చేయండి.
\left(u-15\right)\left(u-2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ u-15ని ఫ్యాక్టర్ అవుట్ చేయండి.
2\left(u-15\right)\left(u-2\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
2u^{2}-34u+60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
u=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 60}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
u=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 60}}{2\times 2}
-34 వర్గము.
u=\frac{-\left(-34\right)±\sqrt{1156-8\times 60}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
u=\frac{-\left(-34\right)±\sqrt{1156-480}}{2\times 2}
-8 సార్లు 60ని గుణించండి.
u=\frac{-\left(-34\right)±\sqrt{676}}{2\times 2}
-480కు 1156ని కూడండి.
u=\frac{-\left(-34\right)±26}{2\times 2}
676 వర్గమూలాన్ని తీసుకోండి.
u=\frac{34±26}{2\times 2}
-34 సంఖ్య యొక్క వ్యతిరేకం 34.
u=\frac{34±26}{4}
2 సార్లు 2ని గుణించండి.
u=\frac{60}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి u=\frac{34±26}{4} సమీకరణాన్ని పరిష్కరించండి. 26కు 34ని కూడండి.
u=15
4తో 60ని భాగించండి.
u=\frac{8}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి u=\frac{34±26}{4} సమీకరణాన్ని పరిష్కరించండి. 26ని 34 నుండి వ్యవకలనం చేయండి.
u=2
4తో 8ని భాగించండి.
2u^{2}-34u+60=2\left(u-15\right)\left(u-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 15ని మరియు x_{2} కోసం 2ని ప్రతిక్షేపించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}