మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2\left(x^{2}+7x-8\right)
2 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=7 ab=1\left(-8\right)=-8
x^{2}+7x-8ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-8 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,8 -2,4
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -8ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+8=7 -2+4=2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-1 b=8
సమ్ 7ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-x\right)+\left(8x-8\right)
\left(x^{2}-x\right)+\left(8x-8\right)ని x^{2}+7x-8 వలె తిరిగి వ్రాయండి.
x\left(x-1\right)+8\left(x-1\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 8 ఫ్యాక్టర్ చేయండి.
\left(x-1\right)\left(x+8\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-1ని ఫ్యాక్టర్ అవుట్ చేయండి.
2\left(x-1\right)\left(x+8\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
2x^{2}+14x-16=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-16\right)}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-14±\sqrt{196-4\times 2\left(-16\right)}}{2\times 2}
14 వర్గము.
x=\frac{-14±\sqrt{196-8\left(-16\right)}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-14±\sqrt{196+128}}{2\times 2}
-8 సార్లు -16ని గుణించండి.
x=\frac{-14±\sqrt{324}}{2\times 2}
128కు 196ని కూడండి.
x=\frac{-14±18}{2\times 2}
324 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-14±18}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{4}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-14±18}{4} సమీకరణాన్ని పరిష్కరించండి. 18కు -14ని కూడండి.
x=1
4తో 4ని భాగించండి.
x=-\frac{32}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-14±18}{4} సమీకరణాన్ని పరిష్కరించండి. 18ని -14 నుండి వ్యవకలనం చేయండి.
x=-8
4తో -32ని భాగించండి.
2x^{2}+14x-16=2\left(x-1\right)\left(x-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 1ని మరియు x_{2} కోసం -8ని ప్రతిక్షేపించండి.
2x^{2}+14x-16=2\left(x-1\right)\left(x+8\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.