Aని పరిష్కరించండి
A=3
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A}{A}+\frac{1}{A}}}}=\frac{64}{27}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 2 సార్లు \frac{A}{A}ని గుణించండి.
2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A+1}{A}}}}=\frac{64}{27}
\frac{2A}{A} మరియు \frac{1}{A} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
2+\frac{1}{2+\frac{1}{1+\frac{A}{2A+1}}}=\frac{64}{27}
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ A అన్నది 0కి సమానంగా ఉండకూడదు. \frac{2A+1}{A} యొక్క విలోమరాశులను 1తో గుణించడం ద్వారా \frac{2A+1}{A}తో 1ని భాగించండి.
2+\frac{1}{2+\frac{1}{\frac{2A+1}{2A+1}+\frac{A}{2A+1}}}=\frac{64}{27}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 1 సార్లు \frac{2A+1}{2A+1}ని గుణించండి.
2+\frac{1}{2+\frac{1}{\frac{2A+1+A}{2A+1}}}=\frac{64}{27}
\frac{2A+1}{2A+1} మరియు \frac{A}{2A+1} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
2+\frac{1}{2+\frac{1}{\frac{3A+1}{2A+1}}}=\frac{64}{27}
2A+1+Aలోని పదాల వలె జత చేయండి.
2+\frac{1}{2+\frac{2A+1}{3A+1}}=\frac{64}{27}
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ A అన్నది -\frac{1}{2}కి సమానంగా ఉండకూడదు. \frac{3A+1}{2A+1} యొక్క విలోమరాశులను 1తో గుణించడం ద్వారా \frac{3A+1}{2A+1}తో 1ని భాగించండి.
2+\frac{1}{\frac{2\left(3A+1\right)}{3A+1}+\frac{2A+1}{3A+1}}=\frac{64}{27}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 2 సార్లు \frac{3A+1}{3A+1}ని గుణించండి.
2+\frac{1}{\frac{2\left(3A+1\right)+2A+1}{3A+1}}=\frac{64}{27}
\frac{2\left(3A+1\right)}{3A+1} మరియు \frac{2A+1}{3A+1} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
2+\frac{1}{\frac{6A+2+2A+1}{3A+1}}=\frac{64}{27}
2\left(3A+1\right)+2A+1లో గుణాకారాలు చేయండి.
2+\frac{1}{\frac{8A+3}{3A+1}}=\frac{64}{27}
6A+2+2A+1లోని పదాల వలె జత చేయండి.
2+\frac{3A+1}{8A+3}=\frac{64}{27}
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ A అన్నది -\frac{1}{3}కి సమానంగా ఉండకూడదు. \frac{8A+3}{3A+1} యొక్క విలోమరాశులను 1తో గుణించడం ద్వారా \frac{8A+3}{3A+1}తో 1ని భాగించండి.
\frac{2\left(8A+3\right)}{8A+3}+\frac{3A+1}{8A+3}=\frac{64}{27}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 2 సార్లు \frac{8A+3}{8A+3}ని గుణించండి.
\frac{2\left(8A+3\right)+3A+1}{8A+3}=\frac{64}{27}
\frac{2\left(8A+3\right)}{8A+3} మరియు \frac{3A+1}{8A+3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{16A+6+3A+1}{8A+3}=\frac{64}{27}
2\left(8A+3\right)+3A+1లో గుణాకారాలు చేయండి.
\frac{19A+7}{8A+3}=\frac{64}{27}
16A+6+3A+1లోని పదాల వలె జత చేయండి.
27\left(19A+7\right)=64\left(8A+3\right)
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ A అన్నది -\frac{3}{8}కి సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా 27\left(8A+3\right)తో గుణించండి, కనిష్ట సామాన్య గుణిజము 8A+3,27.
513A+189=64\left(8A+3\right)
19A+7తో 27ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
513A+189=512A+192
8A+3తో 64ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
513A+189-512A=192
రెండు భాగాల నుండి 512Aని వ్యవకలనం చేయండి.
A+189=192
Aని పొందడం కోసం 513A మరియు -512Aని జత చేయండి.
A=192-189
రెండు భాగాల నుండి 189ని వ్యవకలనం చేయండి.
A=3
3ని పొందడం కోసం 189ని 192 నుండి వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}